6533b86ffe1ef96bd12ce875
RESEARCH PRODUCT
Drosophila SMN2minigene reporter model identifies moxifloxacin as a candidate therapy for SMA
Ruben ArteroPiotr Koniecznysubject
0301 basic medicineMoxifloxacinDrug Evaluation PreclinicalSMN1BiologyBiochemistryAnimals Genetically ModifiedMuscular Atrophy Spinal03 medical and health sciencesExon0302 clinical medicineGenes ReporterGeneticsmedicineAnimalsHumansMolecular BiologyExonsSpinal muscular atrophyMotor neuronSMA*medicine.diseasenervous system diseasesCell biologySurvival of Motor Neuron 2 ProteinAlternative SplicingDisease Models AnimalDrosophila melanogaster030104 developmental biologymedicine.anatomical_structureCajal bodyBlood-Brain BarrierRNA splicing030217 neurology & neurosurgeryBiotechnologyMinigenedescription
Spinal muscular atrophy is a rare and fatal neuromuscular disorder caused by the loss of alpha motor neurons. The affected individuals have mutated the ubiquitously expressed SMN1 gene resulting in the loss or reduction in the survival motor neuron (SMN) protein levels. However, an almost identical paralog exists in humans: SMN2. Pharmacological activation of SMN2 exon 7 inclusion by small molecules or modified antisense oligonucleotides is a valid approach to treat SMA. Here we describe an in vivo SMN2 minigene reporter system in Drosophila motor neurons that serves as a cost-effective, feasible, and stringent primary screening model for identifying chemicals capable of crossing the conserved Drosophila blood-brain barrier and modulating exon 7 inclusion. The model was used for the screening of 1100 drugs from the Prestwick Chemical Library, resulting in 2.45% hit rate. The most promising candidate drugs were validated in patient-derived fibroblasts where they proved to increase SMN protein levels. Among them, moxifloxacin modulated SMN2 splicing by promoting exon 7 inclusion. The recovery of SMN protein levels was confirmed by increased colocalization of nuclear gems with Cajal Bodies. Thus, a Drosophila-based drug screen allowed the discovery of an FDA-approved small molecule with the potential to become a novel therapy for SMA.
year | journal | country | edition | language |
---|---|---|---|---|
2018-11-27 | The FASEB Journal |