6533b86ffe1ef96bd12cea02
RESEARCH PRODUCT
Integrability via Reversibility
Maciej P. Wojtkowskisubject
Pure mathematicsClass (set theory)Dense setGeneral Physics and AstronomyLyapunov exponentDynamical Systems (math.DS)IntegrabilityCoexistence of integrability and chaotic behavior01 natural sciencessymbols.namesakeReversibility0103 physical sciencesFOS: MathematicsOrder (group theory)0101 mathematicsInvariant (mathematics)Mathematics - Dynamical SystemsMathematical PhysicsMathematicsComplement (set theory)010102 general mathematicsTorusPhase spacesymbols010307 mathematical physicsGeometry and Topologydescription
Abstract A class of left-invariant second order reversible systems with functional parameter is introduced which exhibits the phenomenon of robust integrability: an open and dense subset of the phase space is filled with invariant tori carrying quasi-periodic motions, and this behavior persists under perturbations within the class. Real-analytic volume preserving systems are found in this class which have positive Lyapunov exponents on an open subset, and the complement filled with invariant tori.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2017-05-01 |