Search results for "Integrability"
showing 10 items of 26 documents
Mappings of Lp-integrable distortion: regularity of the inverse
2016
Let be an open set in ℝn and suppose that is a Sobolev homeomorphism. We study the regularity of f–1 under the Lp-integrability assumption on the distortion function Kf. First, if is the unit ball and p > n – 1, then the optimal local modulus of continuity of f–1 is attained by a radially symmetric mapping. We show that this is not the case when p ⩽ n – 1 and n ⩾ 3, and answer a question raised by S. Hencl and P. Koskela. Second, we obtain the optimal integrability results for ∣Df–1∣ in terms of the Lp-integrability assumptions of Kf.
Darboux integrable system with a triple point and pseudo-abelian integrals
2016
We study pseudo-abelian integrals associated with polynomial perturbations of Dar-boux integrable system with a triple point. Under some assumptions we prove the local boundedness of the number of their zeros. Assuming that this is the only non-genericity, we prove that the number of zeros of the corresponding pseudo-abelian integrals is bounded uniformly for nearby Darboux integrable foliations.
Unbounded derivations and *-automorphisms groups of Banach quasi *-algebras
2018
This paper is devoted to the study of unbounded derivations on Banach quasi *-algebras with a particular emphasis to the case when they are infinitesimal generators of one parameter automorphisms groups. Both of them, derivations and automorphisms are considered in a weak sense; i.e., with the use of a certain families of bounded sesquilinear forms. Conditions for a weak *-derivation to be the generator of a *-automorphisms group are given.
Remarks on regularity for p-Laplacian type equations in non-divergence form
2018
We study a singular or degenerate equation in non-divergence form modeled by the $p$-Laplacian, $$-|Du|^\gamma\left(\Delta u+(p-2)\Delta_\infty^N u\right)=f\ \ \ \ \text{in}\ \ \ \Omega.$$ We investigate local $C^{1,\alpha}$ regularity of viscosity solutions in the full range $\gamma>-1$ and $p>1$, and provide local $W^{2,2}$ estimates in the restricted cases where $p$ is close to 2 and $\gamma$ is close to 0.
Measurable selectors and set-valued Pettis integral in non-separable Banach spaces
2009
AbstractKuratowski and Ryll-Nardzewski's theorem about the existence of measurable selectors for multi-functions is one of the keystones for the study of set-valued integration; one of the drawbacks of this result is that separability is always required for the range space. In this paper we study Pettis integrability for multi-functions and we obtain a Kuratowski and Ryll-Nardzewski's type selection theorem without the requirement of separability for the range space. Being more precise, we show that any Pettis integrable multi-function F:Ω→cwk(X) defined in a complete finite measure space (Ω,Σ,μ) with values in the family cwk(X) of all non-empty convex weakly compact subsets of a general (n…
Painlev\'{e} analysis for a generalized nonlinear Schr\"{o}dinger equation
2008
Thermal solitons in nanotubes
2022
Starting from a recent proposal of a nonlinear Maxwell-Cattaneo equation for the heat transport with relaxational effects at nanoscale, in a special case of thermal-wave propagation we derive a nonlinear Schrodinger equation for the amplitudes of the heatflux perturbation. The complete integrability of the obtained equation is investigated in order to prove the existence of infinite conservation laws, as well as the existence of infinite exact solutions. In this regards, we have considered the simplest nontrivial solutions, namely, the bright and dark (thermal) solitons, which may be interesting for energy transport and for information transmission in phononic circuits. (c) 2022 Elsevier B.…
Kurzweil-Henstock type integration on Banach spaces
2004
In this paper properties of Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrals for vector-valued functions are studied. In particular, the absolute integrability for Kurzweil-Henstock integrable functions is characterized and a Kurzweil-Henstock version of the Vitali Theorem for Pettis integrable functions is given.
Yangian Symmetry for Fishnet Feynman Graphs
2017
Various classes of fishnet Feynman graphs are shown to feature a Yangian symmetry over the conformal algebra. We explicitly discuss scalar graphs in three, four and six spacetime dimensions as well as the inclusion of fermions in four dimensions. The Yangian symmetry results in novel differential equations for these families of largely unsolved Feynman integrals. Notably, the considered fishnet graphs in three and four dimensions dominate the correlation functions and scattering amplitudes in specific double scaling limits of planar, gamma-twisted N=4 super Yang-Mills or ABJM theory. Consequently, the study of fishnet graphs allows us to get deep insights into the integrability of the plana…
Martingale Convergence Theorems and Their Applications
2020
We became familiar with martingales X=(X n ) n∈N0 as fair games and found that under certain transformations (optional stopping, discrete stochastic integral) martingales turn into martingales. In this chapter, we will see that under weak conditions (non-negativity or uniform integrability) martingales converge almost surely. Furthermore, the martingale structure implies L p -convergence under assumptions that are (formally) weaker than those of Chapter 7. The basic ideas of this chapter are Doob’s inequality (Theorem 11.4) and the upcrossing inequality (Lemma 11.3).