Search results for "Integrability"

showing 10 items of 26 documents

Mappings of Lp-integrable distortion: regularity of the inverse

2016

Let be an open set in ℝn and suppose that is a Sobolev homeomorphism. We study the regularity of f–1 under the Lp-integrability assumption on the distortion function Kf. First, if is the unit ball and p > n – 1, then the optimal local modulus of continuity of f–1 is attained by a radially symmetric mapping. We show that this is not the case when p ⩽ n – 1 and n ⩾ 3, and answer a question raised by S. Hencl and P. Koskela. Second, we obtain the optimal integrability results for ∣Df–1∣ in terms of the Lp-integrability assumptions of Kf.

regularity of the inverseUnit sphereDistortion functionDiscrete mathematicsPure mathematicsSobolev homeomorphismGeneral Mathematicsta111010102 general mathematicsOpen setInverse01 natural sciencesModulus of continuityHomeomorphism010101 applied mathematicsSobolev spaceDistortion (mathematics)mappings of finite distortionmodulus of continuityhigher integrability0101 mathematicsMathematicsProceedings of the Royal Society of Edinburgh: Section A Mathematics
researchProduct

Darboux integrable system with a triple point and pseudo-abelian integrals

2016

We study pseudo-abelian integrals associated with polynomial perturbations of Dar-boux integrable system with a triple point. Under some assumptions we prove the local boundedness of the number of their zeros. Assuming that this is the only non-genericity, we prove that the number of zeros of the corresponding pseudo-abelian integrals is bounded uniformly for nearby Darboux integrable foliations.

0209 industrial biotechnologyPure mathematicsControl and OptimizationIntegrable systemTriple pointAbelian integrals[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]Darboux integrability[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)02 engineering and technologyType (model theory)01 natural sciencesIntegrating factor020901 industrial engineering & automationFOS: MathematicsLimit Cycle0101 mathematicsAbelian groupMathematics - Dynamical Systems34C07 34C08MathematicsNumerical AnalysisAlgebra and Number Theory010102 general mathematicsMathematical analysisLimit cyclesMathematics Subject ClassificationControl and Systems EngineeringBounded functionFoliation (geology)
researchProduct

Unbounded derivations and *-automorphisms groups of Banach quasi *-algebras

2018

This paper is devoted to the study of unbounded derivations on Banach quasi *-algebras with a particular emphasis to the case when they are infinitesimal generators of one parameter automorphisms groups. Both of them, derivations and automorphisms are considered in a weak sense; i.e., with the use of a certain families of bounded sesquilinear forms. Conditions for a weak *-derivation to be the generator of a *-automorphisms group are given.

Unbounded derivationPure mathematicsAutomorphisms groups and their infinitesimal generatorsInfinitesimalBanach quasi *-algebra01 natural sciencesMathematics::Group Theory*-Automorphisms groups and their infinitesimal generatorSettore MAT/05 - Analisi Matematica0103 physical sciencesFOS: MathematicsAutomorphisms groups and their infinitesimal generators; Banach quasi; Integrability of derivation; Unbounded derivations; Automorphisms groups and their infinitesimal generators; Banach quasi; Integrability of derivation; Unbounded derivationsBanach quasi0101 mathematicsOperator Algebras (math.OA)MathematicsGroup (mathematics)Applied Mathematics010102 general mathematicsIntegrability of derivationMathematics - Operator AlgebrasAutomorphismUnbounded derivationsFunctional Analysis (math.FA)Mathematics - Functional AnalysisBounded function010307 mathematical physicsGenerator (mathematics)
researchProduct

Remarks on regularity for p-Laplacian type equations in non-divergence form

2018

We study a singular or degenerate equation in non-divergence form modeled by the $p$-Laplacian, $$-|Du|^\gamma\left(\Delta u+(p-2)\Delta_\infty^N u\right)=f\ \ \ \ \text{in}\ \ \ \Omega.$$ We investigate local $C^{1,\alpha}$ regularity of viscosity solutions in the full range $\gamma>-1$ and $p>1$, and provide local $W^{2,2}$ estimates in the restricted cases where $p$ is close to 2 and $\gamma$ is close to 0.

viscosity solutionsintegrability of second derivativesType (model theory)01 natural sciencesDivergencelocal C1ViscosityMathematics - Analysis of PDEsFOS: Mathematicspartial differential equations0101 mathematicsMathematicsMathematical physicsosittaisdifferentiaaliyhtälötα regularityApplied Mathematics010102 general mathematicsta111p-Laplacianlocal C1α regularityviskositeettiDegenerate equation35J60 35B65 35J92010101 applied mathematicsviscosityp-LaplacianAnalysisAnalysis of PDEs (math.AP)Journal of Differential Equations
researchProduct

Measurable selectors and set-valued Pettis integral in non-separable Banach spaces

2009

AbstractKuratowski and Ryll-Nardzewski's theorem about the existence of measurable selectors for multi-functions is one of the keystones for the study of set-valued integration; one of the drawbacks of this result is that separability is always required for the range space. In this paper we study Pettis integrability for multi-functions and we obtain a Kuratowski and Ryll-Nardzewski's type selection theorem without the requirement of separability for the range space. Being more precise, we show that any Pettis integrable multi-function F:Ω→cwk(X) defined in a complete finite measure space (Ω,Σ,μ) with values in the family cwk(X) of all non-empty convex weakly compact subsets of a general (n…

Pettis integralDiscrete mathematicsPure mathematicsUniform integrabilityIntegrable systemMulti-functionClosure (topology)Banach spaceSpace (mathematics)Measure (mathematics)Multi-measureSeparable spacePettis integralMeasurable selectorAnalysisMathematicsJournal of Functional Analysis
researchProduct

Painlev\'{e} analysis for a generalized nonlinear Schr\"{o}dinger equation

2008

Painlev\`{e} test Complete integrabilitySettore MAT/07 - Fisica Matematica
researchProduct

Thermal solitons in nanotubes

2022

Starting from a recent proposal of a nonlinear Maxwell-Cattaneo equation for the heat transport with relaxational effects at nanoscale, in a special case of thermal-wave propagation we derive a nonlinear Schrodinger equation for the amplitudes of the heatflux perturbation. The complete integrability of the obtained equation is investigated in order to prove the existence of infinite conservation laws, as well as the existence of infinite exact solutions. In this regards, we have considered the simplest nontrivial solutions, namely, the bright and dark (thermal) solitons, which may be interesting for energy transport and for information transmission in phononic circuits. (c) 2022 Elsevier B.…

Complete integrabilityComputational MathematicsThermal solitonsApplied MathematicsModeling and SimulationComplete integrability; Extended Non-Equilibrium Thermodynamics; Maxwell–Cattaneo law; Nonlinear Schrödinger equation; Thermal solitonsNonlinear Schrödinger equationGeneral Physics and AstronomyNonlinear Schroedinger equation Thermal solitons Maxwell-Cattaneo law Extended Non-Equilibrium Thermodynamics Complete integrabilityMaxwell–Cattaneo lawSettore MAT/07 - Fisica MatematicaExtended Non-Equilibrium Thermodynamics
researchProduct

Kurzweil-Henstock type integration on Banach spaces

2004

In this paper properties of Kurzweil-Henstock and Kurzweil-Henstock-Pettis integrals for vector-valued functions are studied. In particular, the absolute integrability for Kurzweil-Henstock integrable functions is characterized and a Kurzweil-Henstock version of the Vitali Theorem for Pettis integrable functions is given.

Pure mathematicsIntegrable systemequiintegrabilityInfinite-dimensional vector functionMathematical analysisBanach spaceRiemann–Stieltjes integralType (model theory)Infinite-dimensional holomorphyKurzweil-Henstock integral28B0526A39Pettis integralGeometry and TopologyDaniell integralLp spaceAnalysisMathematics
researchProduct

Yangian Symmetry for Fishnet Feynman Graphs

2017

Various classes of fishnet Feynman graphs are shown to feature a Yangian symmetry over the conformal algebra. We explicitly discuss scalar graphs in three, four and six spacetime dimensions as well as the inclusion of fermions in four dimensions. The Yangian symmetry results in novel differential equations for these families of largely unsolved Feynman integrals. Notably, the considered fishnet graphs in three and four dimensions dominate the correlation functions and scattering amplitudes in specific double scaling limits of planar, gamma-twisted N=4 super Yang-Mills or ABJM theory. Consequently, the study of fishnet graphs allows us to get deep insights into the integrability of the plana…

High Energy Physics - Theorydimension: 4Feynman graphScalar (mathematics)[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesConformal mapintegrability01 natural sciencesalgebra: conformal[ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th]symbols.namesake0103 physical sciencesFeynman diagramcorrelation function010306 general physicsABJM modelMathematical PhysicsMathematical physicsPhysicsfield theory: conformalSpacetimeAdS/CFT correspondence010308 nuclear & particles physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]Mathematical analysisscattering amplitudescalingdifferential equationsMathematical Physics (math-ph)FermionScattering amplitudespace-time: dimension: 6AdS/CFT correspondenceHigh Energy Physics - Theory (hep-th)symmetry: Yangiansupersymmetry: 4symbols[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Yangian
researchProduct

Martingale Convergence Theorems and Their Applications

2020

We became familiar with martingales X=(X n ) n∈N0 as fair games and found that under certain transformations (optional stopping, discrete stochastic integral) martingales turn into martingales. In this chapter, we will see that under weak conditions (non-negativity or uniform integrability) martingales converge almost surely. Furthermore, the martingale structure implies L p -convergence under assumptions that are (formally) weaker than those of Chapter 7. The basic ideas of this chapter are Doob’s inequality (Theorem 11.4) and the upcrossing inequality (Lemma 11.3).

Doob's martingale inequalityUniform integrabilityPure mathematicsDoob's martingale convergence theoremsLocal martingaleAlmost surelyMartingale (probability theory)Stock priceStochastic integralMathematics
researchProduct