6533b870fe1ef96bd12cf370

RESEARCH PRODUCT

Classical sequences revisited with permutations avoiding dotted pattern

Jean-luc Baril

subject

Discrete mathematicsFibonacci numberMathematics::CombinatoricsApplied Mathematics010102 general mathematicsEulerian path[ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM]0102 computer and information sciences[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM][ MATH.MATH-CO ] Mathematics [math]/Combinatorics [math.CO]01 natural sciencesTheoretical Computer ScienceCombinatorics[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]symbols.namesakePermutation[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]Computational Theory and Mathematics010201 computation theory & mathematics[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]symbolsDiscrete Mathematics and CombinatoricsGeometry and Topology0101 mathematicsMathematics

description

International audience; Inspired by the definition of the barred pattern-avoiding permutation, we introduce the new concept of dotted pattern for permutations. We investigate permutations classes avoiding dotted patterns of length at most 3, possibly along with other classical patterns. We deduce some enumerating results which allow us to exhibit new families of permutations counted by the classical sequences: 2^n, Catalan, Motzkin, Pell, Fibonacci, Fine, Riordan, Padovan, Eulerian.

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-00621274