6533b870fe1ef96bd12cf39c

RESEARCH PRODUCT

Anderson localization problem: An exact solution for 2-D anisotropic systems

W. Von NiessenV. N. Kuzovkov

subject

Statistics and ProbabilityPhysicsAnderson localizationPhase transitionCondensed matter physicsFOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksCondensed Matter PhysicsTransverse planeMatrix (mathematics)Exact solutions in general relativityRandom systemsAnisotropyPhase diagramMathematical physics

description

Our previous results [J.Phys.: Condens. Matter 14 (2002) 13777] dealing with the analytical solution of the two-dimensional (2-D) Anderson localization problem due to disorder is generalized for anisotropic systems (two different hopping matrix elements in transverse directions). We discuss the mathematical nature of the metal-insulator phase transition which occurs in the 2-D case, in contrast to the 1-D case, where such a phase transition does not occur. In anisotropic systems two localization lengths arise instead of one length only.

https://doi.org/10.1016/j.physa.2006.11.005