6533b870fe1ef96bd12cfb8c
RESEARCH PRODUCT
Repair of a Bacterial Small β-Barrel Toxin Pore Depends on Channel Width
Gisela Von HovenAmable J. RivasClaudia NeukirchMartina MeyenburgQianqian QinSapun ParekhNadja HellmannMatthias HusmannCesare MontecuccoArturo Zychlinskysubject
0301 basic medicineBacterial ToxinsAerolysinmedicine.disease_causeMicrobiologySerine03 medical and health sciencesNanoporesVirologyExtracellularmedicineHumansVibrio choleraeChemistryToxinPerforinCell MembraneQR1-502Transmembrane proteinCell biology030104 developmental biologyPhotobacterium damselaeVibrio choleraeCalciumCytolysinResearch Articledescription
ABSTRACT Membrane repair emerges as an innate defense protecting target cells against bacterial pore-forming toxins. Here, we report the first paradigm of Ca2+-dependent repair following attack by a small β-pore-forming toxin, namely, plasmid-encoded phobalysin of Photobacterium damselae subsp. damselae. In striking contrast, Vibrio cholerae cytolysin, the closest ortholog of phobalysin, subverted repair. Mutational analysis uncovered a role of channel width in toxicity and repair. Thus, the replacement of serine at phobalysin´s presumed channel narrow point with the bulkier tryptophan, the corresponding residue in Vibrio cholerae cytolysin (W318), modulated Ca2+ influx, lysosomal exocytosis, and membrane repair. And yet, replacing tryptophan (W318) with serine in Vibrio cholerae cytolysin enhanced toxicity. The data reveal divergent strategies evolved by two related small β-pore-forming toxins to manipulate target cells: phobalysin leads to fulminant perturbation of ion concentrations, closely followed by Ca2+ influx-dependent membrane repair. In contrast, V. cholerae cytolysin causes insidious perturbations and escapes control by the cellular wounded membrane repair-like response.
year | journal | country | edition | language |
---|---|---|---|---|
2017-02-01 | mBio |