6533b870fe1ef96bd12cfd61
RESEARCH PRODUCT
Interaction Between ABA Signaling and Copper Homeostasis inArabidopsis thaliana
Paco RomeroPaco RomeroAmparo SanzLola PeñarrubiaÀNgela Carrió-seguísubject
0106 biological sciences0301 basic medicineBiologiaTranscription GeneticPhysiologyMutantArabidopsisPlant ScienceGenetically modified cropsSodium ChlorideGenes PlantPlant Roots01 natural sciencesGene Knockout Techniques03 medical and health scienceschemistry.chemical_compoundGene Expression Regulation PlantStress PhysiologicalArabidopsisHomeostasisArabidopsis thalianaPlantes Cèl·lules i teixitsAbscisic acidTranscription factorbiologyArabidopsis ProteinsMembrane transport proteinorganic chemicalsfungiMembrane Transport Proteinsfood and beveragesCell BiologyGeneral Medicinebiology.organism_classificationCell biologyOxidative StressPhenotype030104 developmental biologychemistryMutationbiology.proteinSignal transductionCopperAbscisic AcidSignal Transduction010606 plant biology & botanydescription
ABA is involved in plant responses to non-optimal environmental conditions, including nutrient availability. Since copper (Cu) is a very important micronutrient, unraveling how ABA affects Cu uptake and distribution is relevant to ensure adequate Cu nutrition in plants subjected to stress conditions. Inversely, knowledge about how the plant nutritional status can interfere with ABA biosynthesis and signaling mechanisms is necessary to optimize stress tolerance in horticultural crops. Here the reciprocal influence between ABA and Cu content was addressed by using knockout mutants and overexpressing transgenic plants of high affinity plasma membrane Cu transporters (pmCOPT) with altered Cu uptake. Exogenous ABA inhibited pmCOPT expression and drastically modified COPT2-driven localization in roots. ABA regulated SPL7, the main transcription factor responsive for Cu deficiency responses, and subsequently affected expression of its targets. ABA biosynthesis (aba2) and signaling (hab1-1 abi1-2) mutants differentially responded to ABA according to Cu levels. Alteration of Cu homeostasis in the pmCOPT mutants affected ABA biosynthesis, transport and signaling as genes such as NCED3, WRKY40, HY5 and ABI5 were differentially modulated by Cu status, and also in the pmCOPT and ABA mutants. Altered Cu uptake resulted in modified plant sensitivity to salt-mediated increases in endogenous ABA. The overall results provide evidence for reciprocal cross-talk between Cu status and ABA metabolism and signaling.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-01 | Plant and Cell Physiology |