fitforthem
about

scope and guide to the platform

—research groups

research groups network graph visualization

—repositories

catalog of the institutional repositories

—heritage

selection of collections, museum, cultural sites and ancient books

By continuing your visit to this site, you accept the use of essential cookies.

Read more
6533b870fe1ef96bd12cfda9

RESEARCH PRODUCT

Multi-domain spectral approach with Sommerfeld condition for the Maxwell equations

Christian KleinNikola Stoilov

subject

Physics and Astronomy (miscellaneous)Helmholtz equationRotational symmetryMaxwell equationsHelmholtz equationsSommerfeld conditionMulti domain spectral methodsSpheroidal coordinates010103 numerical & computational mathematicsSommerfeld radiation condition01 natural sciencesDomain (mathematical analysis)010305 fluids & plasmassymbols.namesake0103 physical sciencesFOS: Mathematics[INFO]Computer Science [cs]Mathematics - Numerical Analysis0101 mathematics[MATH]Mathematics [math]Physics[PHYS]Physics [physics]Numerical AnalysisApplied MathematicsMathematical analysisNumerical Analysis (math.NA)Prolate spheroidal coordinatesComputer Science ApplicationsComputational MathematicsDipoleMaxwell's equationsModeling and SimulationsymbolsMonochromatic color

description

We present a multidomain spectral approach with an exterior compactified domain for the Maxwell equations for monochromatic fields. The Sommerfeld radiation condition is imposed exactly at infinity being a finite point on the numerical grid. As an example, axisymmetric situations in spherical and prolate spheroidal coordinates are discussed.

yearjournalcountryeditionlanguage
2021-06-01
10.1016/j.jcp.2021.110149https://hal.archives-ouvertes.fr/hal-03283204
EU flag

FORTHEM European University Alliance is co-funded by the European Union. FIT FORTHEM has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 101017248. The content of this website represents the views of the author only and is his/her sole responsibility; it cannot be considered to reflect the views of the European Commission.

University of Jyväskylä logoUniversity of Jyväskylä's websiteUniversity of Burgundy logoUniversity of Burgundy's websiteUniversity of Mainz logoUniversity of Mainz's websiteUniversity of Palermo logoUniversity of Palermo's websiteUniversity of Latvia logoUniversity of Latvia's website
University of Agder logoUniversity of Agder's websiteUniversity of Opole logoUniversity of Opole's websiteUniversity of Sibiu logoUniversity of Sibiu's websiteUniversity of València logoUniversity of València's website
FORTHEM logoFORTHEM alliance's website