6533b870fe1ef96bd12cfda9
RESEARCH PRODUCT
Multi-domain spectral approach with Sommerfeld condition for the Maxwell equations
Christian KleinNikola Stoilovsubject
Physics and Astronomy (miscellaneous)Helmholtz equationRotational symmetryMaxwell equationsHelmholtz equationsSommerfeld conditionMulti domain spectral methodsSpheroidal coordinates010103 numerical & computational mathematicsSommerfeld radiation condition01 natural sciencesDomain (mathematical analysis)010305 fluids & plasmassymbols.namesake0103 physical sciencesFOS: Mathematics[INFO]Computer Science [cs]Mathematics - Numerical Analysis0101 mathematics[MATH]Mathematics [math]Physics[PHYS]Physics [physics]Numerical AnalysisApplied MathematicsMathematical analysisNumerical Analysis (math.NA)Prolate spheroidal coordinatesComputer Science ApplicationsComputational MathematicsDipoleMaxwell's equationsModeling and SimulationsymbolsMonochromatic colordescription
We present a multidomain spectral approach with an exterior compactified domain for the Maxwell equations for monochromatic fields. The Sommerfeld radiation condition is imposed exactly at infinity being a finite point on the numerical grid. As an example, axisymmetric situations in spherical and prolate spheroidal coordinates are discussed.
year | journal | country | edition | language |
---|---|---|---|---|
2021-06-01 |