6533b870fe1ef96bd12d0726
RESEARCH PRODUCT
Dextran-based therapeutic nanoparticles for hepatic drug delivery.
Dennis StrandAndrea TuettenbergDetlef SchuppanDetlef SchuppanPeter WichJonathan SchuppMustafa DikenFriedrich FoersterLydia RadiStephanie StroblMartin WeilbächerLeonard KapsDenise Bambergersubject
0301 basic medicineBiodistributionMaterials scienceCell SurvivalSurface PropertiesBiomedical EngineeringMedicine (miscellaneous)Antigens Differentiation Myelomonocyticchemical and pharmacologic phenomenaBioengineering02 engineering and technologyDevelopmentPharmacologyPolyethylene Glycols03 medical and health scienceschemistry.chemical_compoundMiceIn vivoAntigens CDAnimalsHumansGeneral Materials ScienceTissue DistributionParticle SizeRNA Small InterferingDrug CarriersMice Inbred BALB Corganic chemicalsMacrophageshemic and immune systemsDextransDendritic cell3T3 CellsDendritic Cells021001 nanoscience & nanotechnology030104 developmental biologyDextranRAW 264.7 CellschemistryLiverDrug deliveryToxicityPEGylationNanoparticles0210 nano-technologyDrug carrierdescription
Aim: Evaluation of dextran-based nanoparticles (DNP) as a drug delivery system to target myeloid cells of the liver. Materials & methods: DNP were synthesized and optionally PEGylated. Their toxicity and cellular uptake were studied in vitro. Empty and siRNA-carrying DNP were tested in vivo with regard to biodistribution and cellular uptake. Results: In vitro, DNP were taken up by cells of the myeloid lineage without compromising their viability. In vivo, empty and siRNA-carrying DNP distributed to the liver where a single treatment addressed approximately 70% of macrophages and dendritic cells. Serum parameters indicated no in vivo toxicity. Conclusion: DNP are multifunctional liver-specific drug carriers which lack toxic side effects and may be utilized in clinical applications targeting liver macrophages.
year | journal | country | edition | language |
---|---|---|---|---|
2016-10-01 | Nanomedicine (London, England) |