6533b870fe1ef96bd12d074a

RESEARCH PRODUCT

Magnetic interaction between coupled quantum dots

Stephanie ReimannJ. KolehmainenM. KoskinenM. Manninen

subject

PhysicsCoupling (physics)Condensed matter physicsSpinsQuantum dotAntiferromagnetismElectronic structureCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsGround stateInductive couplingElectronic Optical and Magnetic MaterialsMagnetic field

description

We study the magnetic coupling in artificial molecules composed of two and four laterally coupled quantum dots. The electronic ground-state configurations of such systems are determined by applying current spin density functional theory which allows to include effects of magnetic fields. While the ground-state of a two-dot molecule with strong enough inter-dot coupling tends to be antiferromagnetic with respect to the spins of the single dot components, we find that a square lattice of four dots has a ferromagnetic ground state.

https://doi.org/10.1007/s100510050092