6533b870fe1ef96bd12d082b
RESEARCH PRODUCT
The mKdV equation and multi-parameters rational solutions
Pierre Gaillardsubject
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph][PHYS]Physics [physics]Pure mathematicsApplied MathematicsRational solutionsGeneral Physics and Astronomy[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]01 natural sciences010305 fluids & plasmasComputational MathematicsNonlinear Sciences::Exactly Solvable and Integrable SystemsIntegerWronskiansModeling and Simulation0103 physical sciencesOrder (group theory)mKdV equation010301 acousticsQuotientMathematicsdescription
Abstract N -order solutions to the modified Korteweg–de Vries (mKdV) equation are given in terms of a quotient of two wronskians of order N depending on 2 N real parameters. When one of these parameters goes to 0, we succeed to get for each positive integer N , rational solutions as a quotient of polynomials in x and t depending on 2 N real parameters. We construct explicit expressions of these rational solutions for orders N = 1 until N = 6 .
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-01 | Wave Motion |