6533b871fe1ef96bd12d0eef
RESEARCH PRODUCT
Activation of the p75 neurotrophin receptor through conformational rearrangement of disulphide-linked receptor dimers.
Esra KaracaRajappa S. KenchappaIoannis CharalampopoulosBruce D. CarterWilma J. FriedmanAlessandra ReversiSoyoung ChoiPhilippe I. H. BastiaensMarçal VilarGiampietro SchiavoIsmael MingarroMark BothwellAnastasia SimiCarlos F. IbáñezPeter J. Verveersubject
Protein ConformationMutantNeuronesReceptor Nerve Growth FactorMiceProtein structureChlorocebus aethiopsNerve Growth FactorLow-affinity nerve growth factor receptorRNA Small InterferingReceptorskin and connective tissue diseasesReceptors neuralsCells CulturedNeuronsCell DeathGeneral NeuroscienceNF-kappa BCell biologyTransmembrane domainSIGNALINGOligopeptidesNeurotrophinProtein BindingSignal Transductionmusculoskeletal diseasesPROTEINSNeuroscience(all)Green Fluorescent ProteinsNerve Tissue ProteinsReceptors Nerve Growth FactorSuperior Cervical GanglionBiologyTransfectionMOLNEUROArticleGrowth factor receptorAnimalsHumansProtein Interaction Domains and MotifsReceptors Growth FactorCysteineBinding SitesMembrane Proteinsbiological factorsRatsnervous systemAnimals NewbornNeurotrophin bindingMutationbiology.proteinsense organsProtein MultimerizationrhoA GTP-Binding ProteinProteïnesdescription
Ligand-mediated dimerization has emerged as a universal mechanism of growth factor receptor activation. Recent structural studies have shown that neurotrophins interact with dimers of the p75 neurotrophin receptor (p75NTR), but the actual mechanism of receptor activation has remained elusive. Here we show that p75NTR forms disulphide-linked dimers independently of neurotrophin binding through the highly conserved Cys257 in its transmembrane domain. Mutation of Cys257 abolished neurotrophin-dependent receptor activity but did not affect downstream signaling by the p75NTR/NgR/Lingo-1 complex in response to MAG, indicating the existence of distinct, ligand-specific activation mechanisms for p75NTR. FRET experiments revealed a close association of p75NTR intracellular domains that was transiently disrupted by conformational changes induced upon NGF binding. Although mutation of Cys257 did not alter the oligomeric state of p75NTR, the mutant receptor was no longer able to propagate conformational changes to the cytoplasmic domain upon ligand binding. We propose that neurotrophins activate p75NTR by a novel mechanism involving rearrangement of disulphide-linked receptor subunits.
year | journal | country | edition | language |
---|---|---|---|---|
2009-04-01 | Neuron |