6533b871fe1ef96bd12d0ef3
RESEARCH PRODUCT
A minimal tight-binding model for the quasi-one-dimensional superconductor K2Cr3As3
Giuseppe CuonoGiuseppe CuonoAdolfo AvellaCanio NoceAlfonso RomanoFilomena ForteMaria Teresa MercaldoCarmine Autierisubject
FOS: Physical sciencesGeneral Physics and AstronomyElectronic structure01 natural sciencesProjection (linear algebra)010305 fluids & plasmasSuperconductivity (cond-mat.supr-con)Minimal modelsymbols.namesakeTight bindingArsenidesQuantum mechanics0103 physical sciencesTight-bindingWannier010306 general physicsElectronic band structurePhysicsCondensed Matter - SuperconductivityFermi levelFermi energyLöwdinMinimal modelSymmetry (physics)symbolsArsenides; Löwdin; Minimal model; Tight-binding; Wannier;description
We present a systematic derivation of a minimal five-band tight-binding model for the description of the electronic structure of the recently discovered quasi one-dimensional superconductor K2Cr3As3. Taking as a reference the density-functional theory (DFT) calculation, we use the outcome of a Lowdin procedure to refine a Wannier projection and fully exploit the predominant weight at the Fermi level of the states having the same symmetry of the crystal structure. Such states are described in terms of five atomic-like d orbitals: four planar orbitals, two dxy and two dx2-y2, and a single out-of-plane one, dz2 . We show that this minimal model reproduces with great accuracy the DFT band structure in a broad energy window around the Fermi energy. Moreover, we derive an explicit simplified analytical expression of such model, which includes three nearest-neighbor hopping terms along the z direction and one nearest-neighbor term within the xy plane. This model captures very efficiently the energy spectrum of the system and, consequently, can be used to study transport properties, superconductivity and dynamical effects in this novel class of superconductors.
year | journal | country | edition | language |
---|---|---|---|---|
2019-06-01 |