6533b871fe1ef96bd12d0fbd

RESEARCH PRODUCT

Non subanalyticity of sub-Riemannian Martinet spheres

Emmanuel Trélat

subject

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyRiemann manifoldRiemann surface010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]02 engineering and technologyGeneral Medicine01 natural sciencesCombinatoricssymbols.namesake020901 industrial engineering & automationsymbolsOrder (group theory)SPHERES[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematicsMathematics

description

Abstract Consider the sub-Riemannian Martinet structure (M,Δ,g) where M= R 3 , Δ= Ker ( d z− y 2 2 d x) and g is the general gradated metric of order 0 : g=(1+αy) 2 d x 2 +(1+βx+γy) 2 d y 2 . We prove that if α≠0 then the sub-Riemannian spheres S(0,r) with small radii are not subanalytic.

https://hal.archives-ouvertes.fr/hal-00086298/file/cras.pdf