6533b871fe1ef96bd12d0fbd
RESEARCH PRODUCT
Non subanalyticity of sub-Riemannian Martinet spheres
Emmanuel Trélatsubject
[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyRiemann manifoldRiemann surface010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]02 engineering and technologyGeneral Medicine01 natural sciencesCombinatoricssymbols.namesake020901 industrial engineering & automationsymbolsOrder (group theory)SPHERES[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematicsMathematicsdescription
Abstract Consider the sub-Riemannian Martinet structure (M,Δ,g) where M= R 3 , Δ= Ker ( d z− y 2 2 d x) and g is the general gradated metric of order 0 : g=(1+αy) 2 d x 2 +(1+βx+γy) 2 d y 2 . We prove that if α≠0 then the sub-Riemannian spheres S(0,r) with small radii are not subanalytic.
year | journal | country | edition | language |
---|---|---|---|---|
2001-03-01 |