6533b871fe1ef96bd12d19e9
RESEARCH PRODUCT
Beyond the Vegard's law: solid mixing excess volume and thermodynamic potentials prediction, from end-members
Marcello MerliAlessandro Pavesesubject
PhysicsEnthalpyGeneral Physics and AstronomyThermodynamicsComputer simulation01 natural sciences010305 fluids & plasmasThermodynamic potentialGibbs free energysymbols.namesakeVolume (thermodynamics)Vegard's lawNitride materialHelmholtz free energy0103 physical sciencessymbols010306 general physicsMetals and alloyThermodynamic modelingMixing (physics)Solid solutiondescription
Abstract A method has been developed, herein presented, to model binary solid solutions' volume, enthalpy and Gibbs energy using the energy state functions, E ( V , S ) , of the end-members only. The E ( V , S ) s are expanded around an unknown mixing volume, V Mix , and the fundamental equilibrium equation − ( ∂ E / ∂ V ) S = P is used to determine V Mix . V Mix allows us to model enthalpy, straightforwardly. The same argument holds using Helmholtz energy, F ( V , T ) , in place of E ( V , S ) , and the equilibrium equation becomes − ( ∂ F / ∂ V ) T = P . One can readily determine the Gibbs free energy, too. The method presented remarkably simplifies computing of solid mixings' thermodynamic properties and makes it possible to preserve crystal structure symmetry that would undergo reduction because of the introduction of disordered super-cells.
year | journal | country | edition | language |
---|---|---|---|---|
2020-01-01 |