6533b871fe1ef96bd12d1a0a

RESEARCH PRODUCT

Bright Blue Phosphorescence from Cationic Bis-Cyclometalated Iridium(III) Isocyanide Complexes

ShavaleevNail M.MontiFilippoCostaRuben D.ScopellitiRosarioBolinkHenk J.OrtiEnriqueAccorsiGianlucaArmaroliNicolaBaranoffEtienneGraetzelMichaelNazeeruddinMohammad K.

subject

Ir(Iii) ComplexesIsocyanideCationic polymerizationchemistry.chemical_elementEmitting Electrochemical-CellsExcited-State PropertiesElectroluminescent DevicesPhotochemistryAncillary LigandsInorganic Chemistrychemistry.chemical_compoundchemistryExcited stateEfficient BlueIii ComplexesMetal-ComplexesEmission spectrumIridiumPhysical and Theoretical ChemistryPhosphorescenceLuminescenceTurn-On TimesPhotophysical PropertiesSolid solution

description

We report new bis-cyclometalated cationic indium(III) complexes [((CN)-N-boolean AND)(2)Ir(CN-tert-Bu)(2)](CF3SO3) that have tert-butyl isocyanides as neutral auxiliary ligands and 2-phenylpyridine or 2-(4'-fluoropheny1)-R-pyridines (where R is 4-methoxy, 4-tert-butyl, or 5-trifluoromethyl) as (CN)-N-boolean AND ligands. The complexes are white or pale yellow solids that show irreversible reduction and oxidation processes and have a large electrochemical gap of 3.58-3.83 V. They emit blue or bluegreen phosphorescence in liquid/solid solutions from a cyclometalating-ligand-centered excited state. Their emission spectra show vibronic structure with the highest-energy luminescence peak at 440-459 nm. The corresponding quantum yields and observed excited-state lifetimes are up to 76% and 46 mu s, respectively, and the calculated radiative lifetimes are in the range of 46-82 mu s. In solution, the photophysical properties of the complexes are solvent-independent, and their emission color is tuned by variation of the substituents in the cyclometalating ligand. For most of the complexes, an emission color red shift occurs in going from solution to neat solids. However, the shift is minimal for the complexes with bulky tert-butyl or trifluoromethyl groups on the cyclometalating ligands that prevent aggregation. We report the first example of an iridium(III) isocyanide complex that emits blue phosphorescence not only in solution but also as a neat solid.

https://doi.org/10.1021/ic202297h