6533b871fe1ef96bd12d1a83
RESEARCH PRODUCT
Adaptive Control of Soft Robots Based on an Enhanced 3D Augmented Rigid Robot Matching
Kosta JovanovicCosimo Della SantinaMaja TrumicAdriano Fagiolinisubject
0209 industrial biotechnologyControl and OptimizationAdaptive controlKinematicsComputer scienceSoft roboticsSoft roboticsKinematicsSolid modeling02 engineering and technologyComputer Science::Robotics03 medical and health sciences020901 industrial engineering & automationSettore ING-INF/04 - AutomaticaControl theoryRobustness (computer science)0202 electrical engineering electronic engineering information engineeringRepresentation (mathematics)030304 developmental biologyComputingMethodologies_COMPUTERGRAPHICSrobotics0303 health sciencesbusiness.industrysoft robotsAdaptation modelsAdaptive controlRoboticsmodelinguncertain systems.Constant curvatureuncertain systemsControl and Systems EngineeringSolid modelingPiecewiseRobotflexible structuresThree-dimensional displays020201 artificial intelligence & image processingArtificial intelligencebusinessRobotsdescription
Despite having proven successful in generating precise motions under dynamic conditions in highly deformable soft-bodied robots, model based techniques are also prone to robustness issues connected to the intrinsic uncertain nature of the dynamics of these systems. This letter aims at tackling this challenge, by extending the augmented rigid robot formulation to a stable representation of three dimensional motions of soft robots, under Piecewise Constant Curvature hypothesis. In turn, the equivalence between soft-bodied and rigid robots permits to derive effective adaptive controllers for soft-bodied robots, achieving perfect posture regulation under considerable errors in the knowledge of system parameters. The effectiveness of the proposed control design is demonstrated through extensive simulations.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-01 | IEEE Control Systems Letters |