6533b871fe1ef96bd12d1ad3

RESEARCH PRODUCT

The 1.4 mm core of Centaurus A: First VLBI results with the South Pole Telescope

Christopher BeaudoinJason SoohooChristopher H. GreerT. M. CrawfordDirk MudersMakoto InoueThomas P. KrichbaumLaura VertatschitschJonathan WeintroubRemo P. J. TilanusRemo P. J. TilanusJason W. HenningGeoffrey B. CrewJ. Anton ZensusMark GurwellJunhan KimRu-sen LuAlan L. RoyDaniel P. MarroneJohn E. CarlstromSheperd S. DoelemanMing-tang ChenChi H. NguyenChi H. NguyenMichael TitusKeiichi AsadaEduardo RosEduardo RosRyan KeislerJ. BlanchardJ. BlanchardVincent L. FishJan WagnerJan WagnerCornelia MüllerCornelia Müller

subject

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Smithsonian institution010308 nuclear & particles physicsAstronomyAstrophysics::High Energy Astrophysical PhenomenaCentaurus AAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSouth Pole TelescopeSpace and Planetary Science0103 physical sciencesVery-long-baseline interferometryAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics

description

Centaurus A (Cen A) is a bright radio source associated with the nearby galaxy NGC 5128 where high-resolution radio observations can probe the jet at scales of less than a light-day. The South Pole Telescope (SPT) and the Atacama Pathfinder Experiment (APEX) performed a single-baseline very-long-baseline interferometry (VLBI) observation of Cen A in January 2015 as part of VLBI receiver deployment for the SPT. We measure the correlated flux density of Cen A at a wavelength of 1.4 mm on a $\sim$7000 km (5 G$\lambda$) baseline. Ascribing this correlated flux density to the core, and with the use of a contemporaneous short-baseline flux density from a Submillimeter Array observation, we infer a core brightness temperature of $1.4 \times 10^{11}$ K. This is close to the equipartition brightness temperature, where the magnetic and relativistic particle energy densities are equal. Under the assumption of a circular Gaussian core component, we derive an upper limit to the core size $\phi = 34.0 \pm 1.8~\mu\textrm{as}$, corresponding to 120 Schwarzschild radii for a black hole mass of $5.5 \times 10^7 M_{\odot}$.

10.3847/1538-4357/aac7c6http://arxiv.org/abs/1805.09344