6533b871fe1ef96bd12d24b0
RESEARCH PRODUCT
Structural Basis of the High Affinity Interaction between the Alphavirus Nonstructural Protein-3 (nsP3) and the SH3 Domain of Amphiphysin-2
Perttu PermiHelena TossavainenKalle SakselaMaarit HellmanOlli Aitiosubject
0301 basic medicinenuclear magnetic resonance (NMR)Amino Acid MotifsStatic ElectricityPeptideTarget peptidePlasma protein bindingViral Nonstructural ProteinsBiologyhost-pathogen interactionBiochemistrySH3 domainsrc Homology Domainsamphiphysin SH3Structure-Activity Relationship03 medical and health sciencesProtein structuredynaminHumansShort linear motifprotein structureNuclear Magnetic Resonance BiomolecularMolecular BiologySrc homology 3 domain (SH3 domain)Adaptor Proteins Signal Transducingchemistry.chemical_classificationTumor Suppressor Proteinsta1182Nuclear ProteinsIsothermal titration calorimetryCell Biologyintrinsically disordered protein030104 developmental biologychemistryBiochemistrynsP3Protein Structure and FoldingAmphiphysinBiophysicsPeptidesChikungunya virusProtein Bindingdescription
We show that a peptide from Chikungunya virus nsP3 protein spanning residues 1728–1744 binds the amphiphysin-2 (BIN1) Src homology-3 (SH3) domain with an unusually high affinity (Kd 24 nM). Our NMR solution complex structure together with isothermal titration calorimetry data on several related viral and cellular peptide ligands reveal that this exceptional affinity originates from interactions between multiple basic residues in the target peptide and the extensive negatively charged binding surface of amphiphysin-2 SH3. Remarkably, these arginines show no fixed conformation in the complex structure, indicating that a transient or fluctuating polyelectrostatic interaction accounts for this affinity. Thus, via optimization of such dynamic electrostatic forces, viral peptides have evolved a superior binding affinity for amphiphysin-2 SH3 compared with typical cellular ligands, such as dynamin, thereby enabling hijacking of amphiphysin-2 SH3-regulated host cell processes by these viruses. Moreover, our data show that the previously described consensus sequence PXRPXR for amphiphysin SH3 ligands is inaccurate and instead define it as an extended Class II binding motif PXXPXRpXR, where additional positive charges between the two constant arginine residues can give rise to extraordinary high SH3 binding affinity. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-01 | Journal of Biological Chemistry |