6533b871fe1ef96bd12d25dc

RESEARCH PRODUCT

Trimesic acid on Cu in ethanol: Potential-dependent transition from 2-D adsorbate to 3-D metal-organic framework

Marialore SulpiziSantosh Kumar MeenaSantosh Kumar MeenaPhilipp SchäferPaula SebastiánJuan M. FeliuAnusha LalithaMonique A. Van Der VeenKatrin F. Domke

subject

General Chemical EngineeringInorganic chemistrySelf-assembled monolayers02 engineering and technology010402 general chemistryElectrochemistry01 natural sciencesAnalytical ChemistryMetalMolecular dynamicschemistry.chemical_compoundAdsorptionOrganic electrolytesElectrochemistryMoleculeQuímica FísicaChemistryCu UPDSelf-assembled monolayerMetal-organic frameworks021001 nanoscience & nanotechnology0104 chemical sciencesvisual_artvisual_art.visual_art_mediumMetal-organic frameworkTrimesic acid0210 nano-technology

description

We report the potential-dependent interactions of trimesic acid with Cu surfaces in EtOH. CV experiments and electrochemical surface-enhanced Raman spectroscopy show the presence of an adsorbed trimesic acid layer on Cu at potentials lower than 0 V vs Cu. The BTC coverage increases as the potential increases, reaching a maximum at 0 V. Based on molecular dynamics simulations, we report adsorption geometries and possible structures of the organic adlayer. We find that, depending on the crystal facet, trimesic acid adsorbs either flat or with one or two of the carboxyl groups facing the metal surface. At higher coverages, a multi-layer forms that is composed mostly of flat-lying trimesic acid molecules. Increasing the potential beyond 0 V activates the Cu-adsorbate interface in such a way that under oxidation of Cu to Cu2 +, a 3-D metal-organic framework forms directly on the electrode surface. PS gratefully acknowledges the Max Planck Graduate Center and the Studienstiftung des deutschen Volkes for the funding. KFD gratefully acknowledges the generous funding through the Emmy Noether program of the Deutsche Forschungsgemeinschaft (DO 1691/1-1).

https://doi.org/10.1016/j.jelechem.2017.01.025