6533b872fe1ef96bd12d30c3

RESEARCH PRODUCT

Ensemble of Hankel Matrices for Face Emotion Recognition

Liliana Lo PrestiMarco La Cascia

subject

FOS: Computer and information sciencesComputer Science - RoboticsComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionComputer Science - Human-Computer InteractionRobotics (cs.RO)Human-Computer Interaction (cs.HC)

description

In this paper, a face emotion is considered as the result of the composition of multiple concurrent signals, each corresponding to the movements of a specific facial muscle. These concurrent signals are represented by means of a set of multi-scale appearance features that might be correlated with one or more concurrent signals. The extraction of these appearance features from a sequence of face images yields to a set of time series. This paper proposes to use the dynamics regulating each appearance feature time series to recognize among different face emotions. To this purpose, an ensemble of Hankel matrices corresponding to the extracted time series is used for emotion classification within a framework that combines nearest neighbor and a majority vote schema. Experimental results on a public available dataset shows that the adopted representation is promising and yields state-of-the-art accuracy in emotion classification.

https://dx.doi.org/10.48550/arxiv.1507.03811