6533b872fe1ef96bd12d38cc

RESEARCH PRODUCT

On the ambiguous consequences of omitting variables

Franco PeracchiJan R. MagnusGiuseppe De Luca

subject

Statistics::TheoryMean squared errorjel:C52Regression dilutionjel:C51Local regressionjel:C13Regression analysisOmitted-variable biasCross-sectional regressionStatistics::ComputationOmitted variables Misspecification Least-squares estimators Bias Mean squared errorStatistics::Machine LearningStatisticsEconometricsStatistics::MethodologyRegression diagnosticNonlinear regressionMathematics

description

This paper studies what happens when we move from a short regression to a long regression (or vice versa), when the long regression is shorter than the data-generation process. In the special case where the long regression equals the data-generation process, the least-squares estimators have smaller bias (in fact zero bias) but larger variances in the long regression than in the short regression. But if the long regression is also misspecified, the bias may not be smaller. We provide bias and mean squared error comparisons and study the dependence of the differences on the misspecification parameter.

http://www.eief.it/files/2015/05/wp-05-on-the-ambiguous-consequences-of-omitting-variables.pdf