6533b872fe1ef96bd12d3a98

RESEARCH PRODUCT

Boundary Element Crystal Plasticity Method

Vincenzo GulizziIvano BenedettiVincenzo Mallardo

subject

Mathematical optimizationPolycrystalline materials crystal plasticity micromechanics boundary elementMaterials scienceDiscretizationIterative methodCrystal plasticityPolycrystalline materials02 engineering and technology01 natural sciencesNOVolume integralmicromechanicsboundary elementPolycrystalline material0203 mechanical engineering0101 mathematicsMicromechanicBoundary element methodBoundary element method.Mathematical analysisMicromechanicsSingular boundary methodBoundary knot methodComputer Science Applications010101 applied mathematics020303 mechanical engineering & transportsModeling and SimulationAnalytic element method

description

A three-dimensional (3D) boundary element method for small strains crystal plasticity is described. The method, developed for polycrystalline aggregates, makes use of a set of boundary integral equations for modeling the individual grains, which are represented as anisotropic elasto-plastic domains. Crystal plasticity is modeled using an initial strains boundary integral approach. The integration of strongly singular volume integrals in the anisotropic elasto-plastic grain-boundary equations are discussed. Voronoi-tessellation micro-morphologies are discretized using nonstructured boundary and volume meshes. A grain-boundary incremental/iterative algorithm, with rate-dependent flow and hardening rules, is developed and discussed. The method has been assessed through several numerical simulations, which confirm robustness and accuracy.

https://doi.org/10.1142/s1756973717400030