6533b872fe1ef96bd12d3ae7

RESEARCH PRODUCT

Antitumor effects of dehydroxymethylepoxyquinomicin, a novel nuclear factor-kappaB inhibitor, in human liver cancer cells are mediated through a reactive oxygen species-dependent mechanism.

Kazuo UmezawaGiuseppe MontaltoAntonina AzzolinaNatale D'alessandroNadia LampiasiJames A. MccubreyMelchiorre Cervello

subject

Programmed cell deathCarcinoma HepatocellularBIOLOGICAL-ACTIVITIESDrug Evaluation PreclinicalDown-RegulationAntineoplastic AgentsApoptosisBiologymedicine.disease_causeACTIVATIONchemistry.chemical_compoundHYDROGEN-PEROXIDEENDOPLASMIC-RETICULUM STRESSCell Line TumorSurvivinNADPH OXIDASEmedicineHumansOXIDATIVE STRESSProtein kinase AEndoplasmic Reticulum Chaperone BiPINDUCED APOPTOSISCell ProliferationPharmacologySettore MED/12 - GastroenterologiaDose-Response Relationship DrugUNFOLDED PROTEIN RESPONSECell growthCyclohexanonesINDUCTIONLiver NeoplasmsDEATHNF-kappa BCytochromes cMolecular biologyCell biologyEnzyme ActivationchemistryApoptosisCaspasesCancer cellBenzamidesSettore BIO/14 - FarmacologiaMolecular MedicineGrowth inhibitionMitogen-Activated Protein KinasesPoly(ADP-ribose) PolymerasesReactive Oxygen SpeciesOxidative stress

description

Activation of the nuclear transcription factor-kappa B (NF-kappa B) has been implicated in liver tumorigenesis. We evaluated the effects of a novel NF-kappa B inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), in two human liver cancer cell lines HA22T/VGH and HuH-6. DHMEQ treatment dose dependently decreased the DNA-binding capacity of the NF-kappa B p65 subunit, inhibited cell growth and proliferation, and increased apoptosis as shown by caspase activation, release of cytochrome c, poly(ADP-ribose) polymerase cleavage, and down-regulation of survivin. DHMEQ also induced a dose-dependent activation of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling, and inhibition of this pathway significantly reduced cell growth. It is noteworthy that we observed that DHMEQ stimulated reactive oxygen species (ROS) production in a dose-dependent manner and that pretreatment of the cells with the antioxidant N-acetyl-L-cysteine (NAC) significantly reduced DHMEQ-induced ROS generation. Accordingly, NAC completely reversed the DHMEQ-induced growth inhibition, caspase activation, and cell death. DHMEQ-treated cells exhibited DNA damage, as evaluated by accumulation in nuclear foci of phospho-H2AX, which was completely reversed by NAC. Moreover, DHMEQ induced the expression of genes involved in the endoplasmic reticulum stress response (GRP78, CHOP, TRB3) and promoted the splicing of XBP1 mRNA in a dose-dependent fashion in both cell lines, which was reversed in the presence of NAC. Knockdown of TRB3 mRNA expression by small interference RNA significantly decreased DHMEQ-induced cell growth inhibition. These data suggest that DHMEQ antitumor effects are primarily mediated through ROS generation. Thereby, considering that cancer cells are under increased ER stress and oxidative stress conditions, DHMEQ may greatly improve various anticancer strategies.

10.1124/mol.109.055418https://pubmed.ncbi.nlm.nih.gov/19461054