6533b872fe1ef96bd12d422a
RESEARCH PRODUCT
Uniformization of two-dimensional metric surfaces
Kai Rajalasubject
metric surfacesPure mathematicsMathematics - Complex VariablesGeneral Mathematics010102 general mathematicsPrimary 30L10 Secondary 30C65 28A75 51F99 52A38Hausdorff spaceMetric Geometry (math.MG)01 natural sciencesUpper and lower boundsMetric spaceMathematics - Metric GeometryBounded function0103 physical sciencesMetric (mathematics)Euclidean geometryFOS: MathematicsMathematics::Metric Geometry010307 mathematical physicsComplex Variables (math.CV)0101 mathematicsUniformization (set theory)ParametrizationMathematicsdescription
We establish uniformization results for metric spaces that are homeomorphic to the Euclidean plane or sphere and have locally finite Hausdorff 2-measure. Applying the geometric definition of quasiconformality, we give a necessary and sufficient condition for such spaces to be QC equivalent to the Euclidean plane, disk, or sphere. Moreover, we show that if such a QC parametrization exists, then the dilatation can be bounded by 2. As an application, we show that the Euclidean upper bound for measures of balls is a sufficient condition for the existence of a 2-QC parametrization. This result gives a new approach to the Bonk-Kleiner theorem on parametrizations of Ahlfors 2-regular spheres by quasisymmetric maps. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2014-12-10 | Inventiones mathematicae |