6533b872fe1ef96bd12d43ba

RESEARCH PRODUCT

Electronic structure of phthalocyanines : Theoretical investigation of the optical properties of phthalocyanine monomers, dimers, and crystals

C. ClarisseEnrique OrtíJean-luc Brédas

subject

Absorption SpectraAbsorption spectroscopyPhthalocyaninesGeneral Physics and AstronomyElectronic structurePhotochemistryCrystalchemistry.chemical_compoundHamiltonian FunctionMoleculePhysical and Theoretical ChemistryDimers:FÍSICA::Química física [UNESCO]Inorganic compoundchemistry.chemical_classificationValence (chemistry)MonomersMolecular CrystalsUNESCO::FÍSICA::Química físicaCrystallographyElectronic StructurechemistryAbsorption bandPhthalocyanineCondensed Matter::Strongly Correlated ElectronsElectronic Structure ; Molecular Crystals ; Dimers ; Monomers ; Absorption Spectra ; Hamiltonian Function ; Phthalocyanines

description

We present valence effective Hamiltonian (VEH) calculations on the optical absorptions of a series of phthalocyanine compounds: the metal‐free phthalocyanine molecule, a model system for the lithium phthalocyanine molecule, the metal‐free phthalocyanine dimer, and model systems for the lutetium diphthalocyanine and the lithium phthalocyanine crystal. For these compounds, it is found that the major factor influencing the evolution of the optical transitions is not the electronic structure of the metal but rather the geometric structure: phthalocyanine intraring geometry and, in the dimers and crystals, interring separation and staggering angle. The origin of the so‐called Soret or B absorption band is calculated to be significantly more complex than was previously thought on the basis of the simple four‐orbital model. Enrique.Ortí@uv.es

10.1063/1.458131http://hdl.handle.net/10550/12874