6533b872fe1ef96bd12d4428

RESEARCH PRODUCT

Direct RNA Nanopore Sequencing of SARS-CoV-2 Extracted from Critical Material from Swabs

Davide VaccaAntonino FiannacaTramuto FabioValeria CancilaLaura La PagliaMazzucco WalterAlessandro GulinoMassimo La RosaMaida Carmelo MassimoGaia MorelloBeatrice BelmonteCasuccio AlessandraRosario MaugeriGerardo IacopinoBalistrericarmela RitaVitale FrancescoClaudio TripodoAlfonso Urso

subject

SARS-CoV-2COVID-19 Direct RNA nanopore sequencing MinION SARS-CoV-2 SwabScienceQswabPaleontologyMinIONCOVID-19Settore MED/42 - Igiene Generale E ApplicataGeneral Biochemistry Genetics and Molecular BiologyArticleMinION; direct RNA nanopore sequencing; SARS-CoV-2; COVID-19; swabSpace and Planetary Sciencedirect RNA nanopore sequencingEcology Evolution Behavior and Systematics

description

In consideration of the increasing prevalence of COVID-19 cases in several countries and the resulting demand for unbiased sequencing approaches, we performed a direct RNA sequencing (direct RNA seq.) experiment using critical oropharyngeal swab samples collected from Italian patients infected with SARS-CoV-2 from the Palermo region in Sicily. Here, we identified the sequences SARS-CoV-2 directly in RNA extracted from critical samples using the Oxford Nanopore MinION technology without prior cDNA retrotranscription. Using an appropriate bioinformatics pipeline, we could identify mutations in the nucleocapsid (N) gene, which have been reported previously in studies conducted in other countries. In conclusion, to the best of our knowledge, the technique used in this study has not been used for SARS-CoV-2 detection previously owing to the difficulties in the extraction of RNA of sufficient quantity and quality from routine oropharyngeal swabs. Despite these limitations, this approach provides the advantages of true native RNA sequencing and does not include amplification steps that could introduce systematic errors. This study can provide novel information relevant to the current strategies adopted in SARS-CoV-2 next-generation sequencing.

10.3390/life12010069https://dx.doi.org/10.3390/life12010069