6533b873fe1ef96bd12d4ced

RESEARCH PRODUCT

Novel tree-like WO3 nanoplatelets with very high surface area synthesized by anodization under controlled hydrodynamic conditions

Rita Sánchez-tovarR.m. Fernández-domeneE. Segura-sanchísJosé García-antón

subject

Materials scienceNanostructureAcid electrolytesGeneral Chemical EngineeringNanotechnology02 engineering and technologyElectrolyte010402 general chemistry01 natural sciencesIndustrial and Manufacturing EngineeringINGENIERIA QUIMICAsymbols.namesakeMicroscopyEnvironmental ChemistryRotating disk electrodeWater splittingNanoestructuresAnodizingHidrodinàmicaGeneral Chemistry021001 nanoscience & nanotechnologyWO3 nanostructures0104 chemical sciencesHydrodynamic conditionsField electron emissionChemical engineeringElectrodesymbolsAnodization0210 nano-technologyRaman spectroscopy

description

In the present work, a new WO3 nanostructure has been obtained by anodization in a H2SO4/NaF electrolyte under controlled hydrodynamic conditions using a Rotating Disk Electrode (RDE) configuration. Anodized samples were analyzed by means of Field Emission Scanning Electronic Microscopy (FESEM), Confocal Raman Microscopy and photoelectrochemical measurements. The new nanostructure, which consists of nanoplatelets clusters growing in a tree-like manner, presents a very high surface area exposed to the electrolyte, leading to an outstanding enhancement of its photoelectrochemical activity. Obtained results show that the size of nanostructures and the percentage of electrode surface covered by these nanostructures depend strongly on the rotation velocity and the electrolyte composition.

10.1016/j.cej.2015.10.069https://doi.org/10.1016/j.cej.2015.10.069