6533b873fe1ef96bd12d4e23

RESEARCH PRODUCT

Development of a low-alcoholic fermented beverage employing cashew apple juice and non-conventional yeasts

Yendouban LamboniAmparo GameroEddy J. SmidXiao RenAnita R. LinnemannCatrienus De Jong

subject

0106 biological sciencesAstringentSaccharomyces cerevisiaeNon‐conventional yeastsPlant ScienceCashew apple juiceSaccharomyces cerevisiae<i>Hanseniaspora guilliermondii</i>01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)Levensmiddelenmicrobiologie<i>Saccharomyces cerevisiae</i>Torulaspora microellipsoides0404 agricultural biotechnology010608 biotechnology<i>Torulaspora microellipsoides</i>Food scienceAroma profileAromaVLAGlcsh:TP500-660non-conventional yeastsbiologyChemistryfood and beverages04 agricultural and veterinary sciencesbiology.organism_classificationAscorbic acidlcsh:Fermentation industries. Beverages. Alcohol040401 food scienceYeastFood Quality and DesignPolyphenolFood MicrobiologyAlcoholic beveragesHanseniaspora guilliermondiiFermentationHanseniaspora guilliermondiiFood Science

description

Cashew apples are by-products in the production of cashew nuts, which are mostly left to rot in the fields. Cashew apple juice (CAJ), a highly nutritious beverage, can be produced from them. It is rich in sugars and ascorbic acid, but its high polyphenol content makes it bitter and astringent, and therefore difficult to commercialize. The kingdom of fungi contains more than 2000 yeast species, of which only a few species have been studied in relation to their potential to produce aroma compounds. The aim of this research was to develop a new low-alcoholic fermented beverage to valorize cashew apples. For this purpose, a screening was carried out employing non-conventional yeast species and some species of the genus Saccharomyces for comparison, followed by a more detailed study with four selected strains cultured at different conditions. The production of volatile aroma compounds as a function of the presence of oxygen, temperature, and yeast species was investigated. The results showed that the more diverse aroma profiles appeared at 25 °C under anaerobic cultivation conditions, where Saccharomyces cerevisiae WUR 102 and Hanseniaspora guilliermondii CBS 2567 excelled in the synthesis of certain aroma compounds, such as β-phenylethanol and its acetate ester (rose aroma). Further studies are needed to test consumer acceptance of these new products.

10.3390/fermentation5030071https://research.wur.nl/en/publications/development-of-a-low-alcoholic-fermented-beverage-employing-cashe