6533b873fe1ef96bd12d4f05
RESEARCH PRODUCT
Efficient Hot Electron Transfer in Quantum Dot-Sensitized Mesoporous Oxides at Room Temperature
Ivan InfanteMischa BonnStephanie Ten BrinckHai I. WangHai I. WangEnrique CánovasEnrique Cánovassubject
Work (thermodynamics)Materials scienceBioengineeringHot electron transfer02 engineering and technologyPhoton energy010402 general chemistryKinetic energyterahertz spectroscopy01 natural sciencesquantum dot-sensitized solar cellsstrong couplingGeneral Materials ScienceSDG 7 - Affordable and Clean Energy/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energybusiness.industryMechanical EngineeringPbS quantum dotsGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesTerahertz spectroscopy and technologyQuantum dotOptoelectronicsQuantum efficiencyAstrophysics::Earth and Planetary Astrophysics0210 nano-technologybusinessMesoporous materialExcitationdescription
Hot carrier cooling processes represent one of the major efficiency losses in solar energy conversion. Losses associated with cooling can in principle be circumvented if hot carrier extraction toward selective contacts is faster than hot carrier cooling in the absorber (in so-called hot carrier solar cells). Previous work has demonstrated the possibility of hot electron extraction in quantum dot (QD)-sensitized systems, in particular, at low temperatures. Here we demonstrate a room-temperature hot electron transfer (HET) with up to unity quantum efficiency in strongly coupled PbS quantum dot-sensitized mesoporous SnO2. We show that the HET efficiency is determined by a kinetic competition between HET rate (KHET) and the thermalization rate (KTH) in the dots. KHET can be modulated by changing the excitation photon energy; KTH can be modified through the lattice temperature. DFT calculations demonstrate that the HET rate and efficiency are primarily determined by the density of the state (DoS) of QD and oxide. Our results provide not only a new way to achieve efficient hot electron transfer at room temperature but also new insights on the mechanism of HET and the means to control it.
year | journal | country | edition | language |
---|---|---|---|---|
2018-08-08 | Nano Letters |