6533b873fe1ef96bd12d5524

RESEARCH PRODUCT

Uniqueness of solutions for some elliptic equations with a quadratic gradient term

Sergio Segura De LeónDavid Arcoya

subject

Computational MathematicsNonlinear systemControl and OptimizationOperator (computer programming)Quadratic equationControl and Systems EngineeringMathematical analysisPrincipal partGravitational singularityUniquenessBoundary value problemMathematicsTerm (time)

description

We study a comparison principle and uniqueness of positive solutions for the homogeneous Dirichlet boundary value problem associated to quasi-linear elliptic equations with lower order terms. A model example is given by −Δu + λ |∇u| 2 u r = f (x) ,λ , r >0. The main feature of these equations consists in having a quadratic gradient term in which singularities are allowed. The arguments employed here also work to deal with equations having lack of ellipticity or some dependence on u in the right hand side. Furthermore, they could be applied to obtain uniqueness results for nonlinear equations having the p-Laplacian operator as the principal part. Our results improve those already known, even if the gradient term is not singular.

https://doi.org/10.1051/cocv:2008072