6533b873fe1ef96bd12d557b
RESEARCH PRODUCT
An Investigation of the Energy Levels within a Common Perovskite Solar Cell Device and a Comparison of DC/AC Surface Photovoltage Spectroscopy Kelvin Probe Measurements of Different MAPBI3 Perovskite Solar Cell Device Structures
I. D. BaikieSusanna ChallingerIfor D. W. SamuelJonathon R. HarwellGraham A. Turnbullsubject
Kelvin probe force microscopeMaterials scienceBand gapMechanical EngineeringSurface photovoltageAnalytical chemistryPerovskite solar cell02 engineering and technologyHybrid solar cell010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical scienceslaw.inventionMechanics of MaterialslawSolar cellBand diagramGeneral Materials Science0210 nano-technologyVolta potentialdescription
We present a study of the energy levels in a FTO/TiO2/CH3NH3PbI3/Spiro solar cell device. The measurements are performed using a novel ambient pressure photoemission (APS) technique alongside Contact Potential Difference data from a Kelvin Probe. The Perovskite Solar Cell energy band diagram is demonstrated for the device in dark conditions and under illumination from a 150W Quartz Tungsten Halogen lamp. This approach provides useful information on the interaction between the different materials in this solar cell device. Additionally, non-destructive macroscopic DC and AC Surface Photovoltage Spectroscopy (SPS) studies are demonstrated of different MAPBI3 device structures to give an indication of overall device performance. AC-SPS measurements, previously used on traditional semiconductors to study the mobility, are used in this case to characterise the ability of a perovskite solar cell device to respond rapidly to chopped light. Two different device structures studied showed very different characteristics: Sample A (without TiO2): (ITO/PEDOT:PSS/polyTPD/CH3NH3PbI3/PCBM) had ∼4 times the magnitude of AC-SPS response compared to Sample B (including TiO2): (ITO/TiO2/ CH3NH3PbI3/Spiro). This demonstrates that the carrier speed characteristics of device architecture A is superior to device architecture B. The TiO2 layer has been associated with carrier trapping which is illustrated in this example. However, the DC-SPV performance of sample B is ∼5 times greater than that of sample A. The band gap of the MAPBI3 layer was determined through DC-SPS (1.57 ± 0.07 eV), Voc of the devices measured and qualitative observations made of interface trapping by DC light pulsing. The combination of these (APS, KP, AC/DC-SPV/SPS) techniques offers a more general method for measuring the energy level alignments and performance of Organic and Hybrid Solar Cell Devices.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-01 | MRS Advances |