6533b873fe1ef96bd12d5660
RESEARCH PRODUCT
Hydrothermal aging of carbon reinforced epoxy laminates with nanofibrous mats as toughening interlayers
Sabina AlessiMaria Di FilippoMaria Antonietta SabatinoAndrea ZucchelliClelia DispenzaClelia DispenzaGiuseppe Pitarresisubject
Electrospun nanofiberMaterials sciencePolymers and PlasticsCarbon fibers02 engineering and technology010402 general chemistry01 natural sciencesHydrothermal circulationInterlaminar fracture toughneElectrospun nanofibersMaterials ChemistryMechanics of MaterialComposite materialMaterials Chemistry2506 Metals and AlloyPolymers and PlasticTwo-stage water uptake modelEpoxy021001 nanoscience & nanotechnologyCondensed Matter PhysicsTougheningCarbon reinforced epoxy composite0104 chemical sciencesHydrothermal agingMechanics of MaterialsThermo-mechanical propertievisual_artvisual_art.visual_art_mediumSettore CHIM/07 - Fondamenti Chimici Delle Tecnologie0210 nano-technologydescription
Electrospun mats have been applied as toughening interlayers in high performance carbon fiber epoxy composites. While the toughening mechanism exerted by the mat at the interface is the subject of several recent studies, no investigations are reported on the aging behaviour of laminates comprising these nanostructured elements. This work investigates the influence of the combined effect of water and temperature (90 °C) on laminates with Nylon 6,6 electrospun membranes placed either at the middle plane only or at each interlayer. The water-uptake behaviour is modelled by a two-stage diffusion model and compared with the behaviour of the neat resin and of the laminate without mats. Interestingly, a lower water uptake is observed for the laminates with mat-modified interfaces and this is possibly due to a significantly reduced porosity. The effect of hydrothermal aging on the thermal (Tg) and mechanical properties (transverse flexural modulus and interlaminar shear strength) of the various laminates is also investigated.
year | journal | country | edition | language |
---|---|---|---|---|
2016-04-01 | Polymer Degradation and Stability |