6533b873fe1ef96bd12d5710
RESEARCH PRODUCT
Quasiconformal Jordan Domains
Toni Ikonensubject
primary 30l10QA299.6-433Mathematics::Dynamical SystemsMathematics - Complex VariablesMathematics::Complex VariablesHigh Energy Physics::PhenomenologycarathéodoryPrimary 30L10 Secondary 30C65 28A75 51F99 52A38Mathematics::General Topologymetric surfacebeurling–ahlforsMetric Geometry (math.MG)quasiconformalsecondary 30c65 28a75 51f99Carathéodorymetriset avaruudetfunktioteoriaPhysics::Fluid DynamicsMathematics - Metric GeometryBeurling–AhlforsFOS: MathematicsmittateoriaComplex Variables (math.CV)Analysisdescription
We extend the classical Carath\'eodory extension theorem to quasiconformal Jordan domains $( Y, d_{Y} )$. We say that a metric space $( Y, d_{Y} )$ is a quasiconformal Jordan domain if the completion $\overline{Y}$ of $( Y, d_{Y} )$ has finite Hausdorff $2$-measure, the boundary $\partial Y = \overline{Y} \setminus Y$ is homeomorphic to $\mathbb{S}^{1}$, and there exists a homeomorphism $\phi \colon \mathbb{D} \rightarrow ( Y, d_{Y} )$ that is quasiconformal in the geometric sense. We show that $\phi$ has a continuous, monotone, and surjective extension $\Phi \colon \overline{ \mathbb{D} } \rightarrow \overline{ Y }$. This result is best possible in this generality. In addition, we find a necessary and sufficient condition for $\Phi$ to be a quasiconformal homeomorphism. We provide sufficient conditions for the restriction of $\Phi$ to $\mathbb{S}^{1}$ being a quasisymmetry and to $\partial Y$ being bi-Lipschitz equivalent to a quasicircle in the plane.
year | journal | country | edition | language |
---|---|---|---|---|
2020-11-14 | Analysis and Geometry in Metric Spaces |