6533b873fe1ef96bd12d5772
RESEARCH PRODUCT
X-ray transforms in pseudo-Riemannian geometry
Joonas Ilmavirtasubject
Mathematics - Differential GeometryPure mathematicsGeodesic44A12 53C50 11D09Riemannian geometry01 natural sciencespseudo-Riemannian manifoldsinversio-ongelmatsymbols.namesakeray transformsMathematics - Analysis of PDEsMinkowski spaceFOS: Mathematics0101 mathematicsMathematicsEuclidean space010102 general mathematicsNull (mathematics)Manifold010101 applied mathematicsnull geodesicsDifferential Geometry (math.DG)Differential geometryProduct (mathematics)symbolsGeometry and TopologyMathematics::Differential GeometryAnalysis of PDEs (math.AP)description
We study the problem of recovering a function on a pseudo-Riemannian manifold from its integrals over all null geodesics in three geometries: pseudo-Riemannian products of Riemannian manifolds, Minkowski spaces and tori. We give proofs of uniqueness anc characterize non-uniqueness in different settings. Reconstruction is sometimes possible if the signature $(n_1,n_2)$ satisfies $n_1\geq1$ and $n_2\geq2$ or vice versa and always when $n_1,n_2\geq2$. The proofs are based on a Pestov identity adapted to null geodesics (product manifolds) and Fourier analysis (other geometries). The problem in a Minkowski space of any signature is a special case of recovering a function in a Euclidean space from its integrals over all lines with any given set of admissible directions, and we describe sets of lines for which this is possible. Characterizing the kernel of the null geodesic ray transform on tori reduces to solvability of certain Diophantine systems.
year | journal | country | edition | language |
---|---|---|---|---|
2016-08-10 |