6533b873fe1ef96bd12d57ea

RESEARCH PRODUCT

A novel technique for stochastic root-finding: Enhancing the search with adaptive d-ary search

B. John OommenAnis Yazidi

subject

Mathematical optimizationStochastic point location problemsInformation Systems and ManagementLearning automataComputer scienceStochastic root finding problemsLearning Automata020206 networking & telecommunications02 engineering and technologyInterval (mathematics)Function (mathematics)Stochastic approximationComputer Science ApplicationsTheoretical Computer ScienceArtificial IntelligenceControl and Systems Engineering0202 electrical engineering electronic engineering information engineeringSearch problem020201 artificial intelligence & image processingStochastic optimizationAlgorithmRoot-finding algorithmSoftware

description

The most fundamental problem encountered in the field of stochastic optimization, is the Stochastic Root Finding (SRF) problem where the task is to locate an unknown point x∗ for which g(x∗) = 0 for a given function g that can only be observed in the presence of noise [15]. The vast majority of the state-of-the-art solutions to the SRF problem involve the theory of stochastic approximation. The premise of the latter family of algorithms is to oper ate by means of so-called “small-step”processesthat explorethe search space in a conservative manner. Using this paradigm, the point investigated at any time instant is in the proximity of the point investigated at the previous time instant, renderingthe convergence towards the optimal point, x∗, to be sluggish. The unfortunate thing about such a search paradigm is that although g() contains information using which large sections of the search space can be eliminated, this information is unutilized. This paper provides a pioneering and novel scheme to discover and utilize this information. Our solution recursively shrinks the search space by, at least, a factor of 2d 3 at each epoch, where d ≥ 2 is a user-defined parameter of the algorithm. This enhances the convergence significantly. Conceptually, this is achieved through a subtle re-formulationof SRF problem in terms of a continuous-space gen eralization of the Stochastic Point Location (SPL) problem originally proposed by Oommen in [9]. Our scheme is based, in part, on the Continuous Point Location with Adaptive d-ary Search (CPL–AdS), originally presented in [13]. The solution to the CPL–AdS [13], however, is not applicable in our particular domain because of the inher ent asymmetry of the SRF problem. Our solution invokes a CPL–AdS-like solution to partition the search interval into d sub-intervals, evaluates the location of the unknown root x∗ with respect to these sub-intervals using learn ing automata, and prunes the search space in each iteration by eliminating at least one partition. Our scheme, the CPL–AdS algorithm for SRF, denoted as SRF–AdS, is shown to converge to the unknown root x∗ with an arbitrary large degree of accuracy, i.e., with a probability as close to unity as desired. Unlike the classical formulation of the SPL problem proposed by Oommen et al [9,13], in our setting, the probability, p, of the “environment” suggesting an accurate response is non-constant. In fact, the latter probability depends of the point x being examined and the region that is a candidate to be pruned. The fact that p is not constant renders the analysis much more involved than in [13]. The decision rules for pruning are also different from those encountered when p is constant [13].

https://doi.org/10.1016/j.ins.2017.02.014