6533b873fe1ef96bd12d5928

RESEARCH PRODUCT

Planck-scale effects on WIMP dark matter

Jose W.f. ValleRoberto A. LinerosSofiane M. Boucenna

subject

High Energy Physics - TheoryParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)WIMPMaterials Science (miscellaneous)Scalar field dark matterBiophysicsFOS: Physical sciencesGeneral Physics and AstronomyAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesdark matterHigh Energy Physics - Phenomenology (hep-ph)WIMP0103 physical sciencesWarm dark matterindirect detectionparticle physicsPhysical and Theoretical Chemistry010306 general physicsLight dark matterMathematical PhysicsDark Matter PhenomenologyPhysics010308 nuclear & particles physicsHot dark matterPhysicsWIMP dark matterFísicalcsh:QC1-999decaying dark matterHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)astroparticle physicsWeakly interacting massive particlesPlanck scale effectsMixed dark matterdirect detectionHigh Energy Physics::Experimentlcsh:PhysicsDark fluidAstrophysics - Cosmology and Nongalactic Astrophysics

description

There exists a widely known conjecture that gravitational effects violate global symmetries. We study the effect of global-symmetry violating higher-dimension operators induced by Planck-scale physics on the properties of WIMP dark matter. Using an effective description, we show that the lifetime of the WIMP dark matter candidate can satisfy cosmological bounds under reasonable assumptions regarding the strength of the dimension-five operators. On the other hand, the indirect WIMP dark matter detection signal is significantly enhanced due to new decay channels.

10.3389/fphy.2013.00034http://dx.doi.org/10.3389/fphy.2013.00034