6533b873fe1ef96bd12d5950

RESEARCH PRODUCT

Ballistic transport through quantum point contacts of multi-orbital oxides

Vittorio CataudellaJ. SettinoFrancesco RomeoRoberta CitroCarmine Antonio Perroni

subject

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)spin-orbitQuantum point contactConductanceFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldCondensed Matter - Strongly Correlated ElectronsQuantization (physics)Atomic orbitalPoint contactBallistic conductionoxides0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Point contact; oxides; spin-orbit010306 general physics0210 nano-technologyFermi gasQuantum

description

Linear and non-linear transport properties through an atomic-size point contact based on oxides two-dimensional electron gas is examined using the tight-binding method and the $\mathbf{k\cdot p}$ approach. The ballistic transport is analyzed in contacts realized at the (001) interface between band insulators $LaAlO_3$ and $SrTiO_3$ by using the Landauer-B\"uttiker method for many sub-bands derived from three Ti 3d orbitals ($d_{yz}$, $d_{zx}$ and $d_{xy}$) in the presence of an out-of-plane magnetic field. We focus especially on the role played by the atomic spin-orbit coupling and the inversion symmetry breaking term pointing out three transport regimes: the first, at low energies, involving the first $d_{xy}$-like sub-bands, where the conductance quantization is robust; a second one, at intermediate energies, entailing further $d_{xy}$-like sub-bands, where the sub-band splitting induced by the magnetic field is quenched; the third one, where the mixing between light $d_{xy}$-like, heavy $d_{yz}$-like and $d_{zx}$-like sub-bands is so strong that the conductance plateaus turn out to be very narrow. Very good agreement is found with recent experiments exploring the transport properties at low energies.

https://dx.doi.org/10.48550/arxiv.2012.01395