0000000000520397

AUTHOR

J. Settino

showing 2 related works from this author

Spin-orbital polarization of Majorana edge states in oxides nanowires

2020

We investigate a paradigmatic case of topological superconductivity in a one-dimensional nanowire with $d-$orbitals and a strong interplay of spin-orbital degrees of freedom due to the competition of orbital Rashba interaction, atomic spin-orbit coupling, and structural distortions. We demonstrate that the resulting electronic structure exhibits an orbital dependent magnetic anisotropy which affects the topological phase diagram and the character of the Majorana bound states (MBSs). The inspection of the electronic component of the MBSs reveals that the spin-orbital polarization generally occurs along the direction of the applied Zeeeman magnetic field, and transverse to the magnetic and or…

Majorana polarization oxides superconductivityFOS: Physical sciences02 engineering and technology01 natural sciencesSuperconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated Electronssymbols.namesake0103 physical sciencesBound stateMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsPhysicsZeeman effectCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Condensed Matter - Superconductivitysuperconductivity021001 nanoscience & nanotechnologyPolarization (waves)Magnetic fieldMagnetic anisotropyMAJORANAoxidesDensity of statessymbolsAstrophysics::Earth and Planetary Astrophysics0210 nano-technologyMajorana polarizationExcitation
researchProduct

Ballistic transport through quantum point contacts of multi-orbital oxides

2020

Linear and non-linear transport properties through an atomic-size point contact based on oxides two-dimensional electron gas is examined using the tight-binding method and the $\mathbf{k\cdot p}$ approach. The ballistic transport is analyzed in contacts realized at the (001) interface between band insulators $LaAlO_3$ and $SrTiO_3$ by using the Landauer-B\"uttiker method for many sub-bands derived from three Ti 3d orbitals ($d_{yz}$, $d_{zx}$ and $d_{xy}$) in the presence of an out-of-plane magnetic field. We focus especially on the role played by the atomic spin-orbit coupling and the inversion symmetry breaking term pointing out three transport regimes: the first, at low energies, involvi…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)spin-orbitQuantum point contactConductanceFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldCondensed Matter - Strongly Correlated ElectronsQuantization (physics)Atomic orbitalPoint contactBallistic conductionoxides0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Point contact; oxides; spin-orbit010306 general physics0210 nano-technologyFermi gasQuantum
researchProduct