6533b874fe1ef96bd12d6163

RESEARCH PRODUCT

Sard property for the endpoint map on some Carnot groups

Richard MontgomeryDavide VittoneDavide VittoneAlessandro OttazziAlessandro OttazziPierre PansuEnrico Le Donne

subject

Mathematics - Differential Geometry0209 industrial biotechnologyPure mathematics53C17 22F50 22E25 14M17SubvarietyGroup Theory (math.GR)02 engineering and technologySard's property01 natural sciencesSet (abstract data type)020901 industrial engineering & automationAbnormal curves; Carnot groups; Endpoint map; Polarized groups; Sard's property; Sub-Riemannian geometry; Analysis; Mathematical PhysicsMathematics - Metric GeometryFOS: MathematicsPoint (geometry)Canonical mapAbnormal curves; Carnot groups Endpoint map Polarized groups Sard's property Sub-Riemannian geometry Analysis0101 mathematicsMathematics - Optimization and ControlMathematical PhysicsMathematicsApplied Mathematics010102 general mathematicsta111Polarized groupsCarnot groupLie groupEndpoint mapMetric Geometry (math.MG)Base (topology)ManifoldSub-Riemannian geometryDifferential Geometry (math.DG)Optimization and Control (math.OC)Carnot groupsAbnormal curvesMathematics - Group TheoryAnalysis

description

In Carnot-Caratheodory or sub-Riemannian geometry, one of the major open problems is whether the conclusions of Sard's theorem holds for the endpoint map, a canonical map from an infinite-dimensional path space to the underlying finite-dimensional manifold. The set of critical values for the endpoint map is also known as abnormal set, being the set of endpoints of abnormal extremals leaving the base point. We prove that a strong version of Sard's property holds for all step-2 Carnot groups and several other classes of Lie groups endowed with left-invariant distributions. Namely, we prove that the abnormal set lies in a proper analytic subvariety. In doing so we examine several characterizations of the abnormal set in the case of Lie groups.

10.1016/j.anihpc.2015.07.004http://hdl.handle.net/11568/978710