6533b874fe1ef96bd12d61f0
RESEARCH PRODUCT
Dynamics of spontaneous emission in a single-end photonic waveguide
Tommaso TufarelliFrancesco CiccarelloMyungshik Kimsubject
Quantum opticsPhysicsCondensed Matter::Quantum GasesQuantum PhysicsWaveguide (electromagnetism)business.industryFOS: Physical sciencesAtomic and Molecular Physics and OpticsWaveguide QED spontaneous emissionPerfect mirrorAtomSpontaneous emissionPhysics::Atomic PhysicsAtomic physicsPhotonicsbusinessQuantum Physics (quant-ph)ExcitationStationary statedescription
We investigate the spontaneous emission of a two-level system, e.g. an atom or atomlike object, coupled to a single-end, i.e., semi-infinite, one-dimensional photonic waveguide such that one end behaves as a perfect mirror while light can pass through the opposite end with no back-reflection. Through a quantum microscopic model we show that such geometry can cause non-exponential and long-lived atomic decay. Under suitable conditions, a bound atom-photon stationary state appears in the atom-mirror interspace so as to trap a considerable amount of initial atomic excitation. Yet, this can be released by applying an atomic frequency shift causing a revival of photon emission. The resilience of such effects to typical detrimental factors is analyzed.
year | journal | country | edition | language |
---|---|---|---|---|
2012-08-04 |