6533b874fe1ef96bd12d62e8
RESEARCH PRODUCT
Inter-string arrays of bimetallic assemblies with alternative Cu2+-Cl-Cu2+ and Cu-NC-M (M = Co3+, Fe+3, Cr+3) bridges: syntheses, crystal structure, and magnetic properties.
Manas K. SahaIvan BernalFrancesc Lloretsubject
Inorganic ChemistryCrystallographychemistry.chemical_compoundChemistryCyanidemedicineC++ string handlingCrystal structurePhysical and Theoretical ChemistryChlorideBimetallic stripmedicine.drugdescription
Three bimetallic assemblies with alternate homometallic bridges through chloride ligands and heterometallic bridges through cyanide ligands of formula [(323)(2)Cu(2)(Cl)M(CN)(6)](n).2n(H(2)O), where 323 = N,N'-bis(3-aminopropyl)ethylenediamine and M = Co(3+) for 1, Fe(3+) for 2, and Cr(3+) for 3, were synthesized. They have been characterized structurally, analytically, spectroscopically, and magnetically. All three assemblies crystallize in the monoclinic system in the same space group P2(1)/n, with a = 11.642(2) A, b = 10.285(3) A, c = 13.622(2) A, beta = 95.69(3) degrees, V = 1623.1(6) A(3), and Z = 4 for 1; a = 11.681(4) A, b = 10.315(3) A, c = 13.567(5) A, beta = 95.62(3) degrees, V = 1626.8(9) A(3), Z = 4 for 2, and a = 11.782(4) A, b = 10.386(2) A, c = 13.755(4) A, beta = 95.51(3) degrees, V = 1657.4(8) A(3), Z = 4 for 3. Crystal structure analyses reveal that one-dimensional zigzag chains propagate in two different crystallographic directions (a and b) which are held together during the course of their propagation. All three assemblies have a homometallic Cu-Cl-Cu core in common. Assembly 1 exhibits metamagnetic behavior and shows weak antiferromagnetic interactions between Cu(2+) paramagnetic centers, through the chloride bridges. The Neel temperature, T(N), is 3.5 K, and the critical field is 4 T. In the presence of a magnetic field larger than 4 T, the local spin doublets of Cu(2+) in the assembly 1 remain in parallel arrangements. Assemblies 2 and 3 may be described as an alternative repetition of the antiferromagnetically coupled Cu-Cl-Cu fragment and ferromagnetically coupled Cu-CN-Fe(3+)/Cr(3+)fragment. The overall magnetic character of the strings in assemblies 2 and 3 are antiferromagnetic. Ferromagnetic interaction evidenced by the (Cu-CN-Fe(3+)/Cr(3+)) fragment was masked by the antiferromagnetic interaction between the Cu(2+) centers through the chloride bridge. The magnetic properties agree well with those expected for two [323 Cu(2+)] and a [Fe(CN)](3+) unit with spin-orbit coupling effect of the low-spin iron(III) ions for 2 and for two [323 Cu(2+)] and a [Cr(CN)](3+) unit for 3. In aqueous solution, trinuclear [(323)(2)Cu(2)M(CN)(6)](+) and dinuclear [(323)CuM(CN)(6)](-) species were observed.
year | journal | country | edition | language |
---|---|---|---|---|
2004-02-21 | Inorganic chemistry |