6533b874fe1ef96bd12d6302

RESEARCH PRODUCT

Practical system for the generation of pulsed quantum frequency combs

Benjamin WetzelChristian ReimerMichael KuesStefania SciaraPiotr RoztockiDavid J. MossSai T. ChuBrent E. LittleYu ZhangAlfonso Carmelo CinoRoberto Morandotti

subject

Quantum opticPhysics::Optics02 engineering and technologyPhotodetectionQuantum imagingIntegrated optics device01 natural sciencesSettore ING-INF/01 - Elettronica010309 opticsOpticsQuantum state0103 physical sciencesQuantum informationQCQuantum computerPhysicsQuantum opticsParametric oscillators and amplifierbusiness.industryQuantum sensorQSettore ING-INF/02 - Campi Elettromagnetici021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsQC0350Quantum technologyNonlinear optics four-wave mixingOptoelectronicsMode-locked lasers.0210 nano-technologybusiness

description

The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.

10.1364/oe.25.018940http://sro.sussex.ac.uk/id/eprint/69537/1/oe-25-16-18940.pdf_da=1&id=370226&seq=0&mobile=no