6533b874fe1ef96bd12d633d

RESEARCH PRODUCT

Patterning of Magnetic Bimetallic Coordination Nanoparticles of Prussian Blue Derivatives by the Langmuir–Blodgett Technique

Angel López-muñozMiguel Clemente-leónLaure CatalaEugenio CoronadoDiego RepettoTalal Mallah

subject

Prussian blueAqueous solutionBrewster's angleMaterials scienceNanoparticle02 engineering and technologySurfaces and Interfaces010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesLangmuir–Blodgett film0104 chemical sciencesCrystallographychemistry.chemical_compoundsymbols.namesakeAdsorptionchemistryMonolayerElectrochemistrysymbolsGeneral Materials Science0210 nano-technologyBimetallic stripSpectroscopy

description

We report a novel method to prepare patterns of nanoparticles over large areas of the substrate. This method is based on the adsorption of the negatively charged nanoparticles dispersed in an aqueous subphase onto a monolayer of the phospholipid dipalmitoyl-l-α-phosphatidylcholine (DPPC) at the air-water interface. It has been used to prepare patterns of nanoparticles of Prussian blue analogues (PBA) of different size (K(0.25)Ni[Fe(CN)(6)](0.75) (NiFe), K(0.25)Ni[Cr(CN)(6)](0.75) (NiCr), K(0.25)Ni[Co(CN)(6)](0.75) (NiCo), Cs(0.4)Co[Cr(CN)(6)](0.8) (CsCoCr), and Cs(0.4)Co[Fe(CN)(6)](0.9) (CsCoFe)). The behavior of DPPC monolayer at the air-water interface in the presence of the subphase of PBA nanoparticles has been studied by the compression isotherms and Brewster angle microscopy (BAM) images. Atomic force microscopy (AFM) of the transferred films on mica substrates shows that patterns of the nanoparticles are observed for a 10(-4) M concentration of the subphase, based on the nanoparticle precursors, at surface pressures between 1 and 6 mN/m and transfer velocities from 10 to 80 mm/min. Vertical, horizontal, or tilted fringes of the nanoparticles with respect to the transfer direction can be obtained depending on the transfer velocity and surface pressure.

https://doi.org/10.1021/la2049508