6533b881fe1ef96bd12d78df

RESEARCH PRODUCT

Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent

Eugenia T ApostolakiSalvatrice VizziniIris HendriksYlva Olsen

subject

Ocean Acidification International Coordination Centre (OA-ICC)TemperateSalinityChlorophyll ainorganicAlkalinityLight saturation point standard errorPhotosynthetic quantum efficiencyMediterranean Sea Acidification in a Changing Climate MedSeATemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010IrradianceRespiration rate carbonAragonite saturation stateBiomassAlkalinity totalIrradiance standard errortotalCO2 ventCymodocea nodosapHRespirationEpiphytes loadMaximum photochemical quantum yield of photosystem II standard errorNet community production of carbonTemperaturePartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedRespiration rate carbon standard errorCarbonate ionMaximum photochemical quantum yield of photosystem IIPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Net community production of carbon standard errorIlluminance standard errorSoft bottom communitystandard errorCarbon inorganic dissolved standard errorRespiration rateElectron transport rate standard errorEarth System Researchδ13CPhotosynthetic quantum efficiency standard errorField observationChlorophyll a standard errorGross primary production of carbonBiomass standard errorCalcium carbonatePotentiometric titrationCalcite saturation stateShoot densityPotentiometricwaterIlluminanceOxygen standard errorBenthosAlkalinity total standard errorMediterranean Sea Acidification in a Changing Climate (MedSeA)Electron transport rateLight saturation pointOcean Acidification International Coordination Centre OA ICCMediterranean SeaGross primary production of carbon standard errorBicarbonate ionSoft-bottom communityδ13C standard errorTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)Primary production PhotosynthesisSpeciespH standard errorCarbonate system computation flagloadPrimary production/PhotosynthesisFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonBiomass/Abundance/Elemental compositionTreatmentEpiphytes load standard errorOxygenPartial pressure of carbon dioxide water at sea surface temperature wet airEpiphytes loadCarbon dioxideCarbon standard errorEntire communityFugacity of carbon dioxide water at sea surface temperature wet airGroupBiomass Abundance Elemental compositionCoast and continental shelfEpiphytesShoot density standard errorCalcium carbonate standard error

description

We examined the long-term effect of naturally acidified water on a Cymodocea nodosa meadow growing at a shallow volcanic CO2 vent in Vulcano Island (Italy). Seagrass and adjacent unvegetated habitats growing at a low pH station (pH = 7.65 ± 0.02) were compared with corresponding habitats at a control station (pH = 8.01 ± 0.01). Density and biomass showed a clear decreasing trend at the low pH station and the below- to above-ground biomass ratio was more than 10 times lower compared to the control. C content and delta 13C of leaves and epiphytes were significantly lower at the low pH station. Photosynthetic activity of C. nodosa was stimulated by low pH as seen by the significant increase in Chla content of leaves, maximum electron transport rate and compensation irradiance. Seagrass community metabolism was intense at the low pH station, with significantly higher net community production, respiration and gross primary production than the control community, whereas metabolism of the unvegetated community did not differ between stations. Productivity was promoted by the low pH, but this was not translated into biomass, probably due to nutrient limitation, grazing or poor environmental conditions. The results indicate that seagrass response in naturally acidified conditions is dependable upon species and geochemical characteristics of the site and highlight the need for a better understanding of complex interactions in these environments.

10.1594/pangaea.833844https://doi.org/10.1594/PANGAEA.833844