6533b881fe1ef96bd12d8bac

RESEARCH PRODUCT

Ocean acidification affects fish spawning but not paternity at CO2 seeps

Marco MilazzoCarlo CattanoSuzanne H AlonzoA FoggoMichele GristinaRiccardo Rodolfo-metalpaMauro SinopoliDavide SpataforaKelly A StiverJason M Hall-spencer

subject

Eggs standard errorOcean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesIdentificationSalinityEggsinorganicAlkalinityExperimentNumber standard errorDominant male paternityTemperature waterCarbon inorganic dissolvedNumber of individualsCalculated using seacarb after Nisumaa et al 2010Number of spawning events standard errorAragonite saturation stateFish standard lengthChordataAlkalinity totalSalinity standard errortotalCO2 ventReplicatesCourtship standard errorpHPelagosReproductionSymphodus ocellatusTemperatureNumberPartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)standard errorIndividuals standard errorEarth System ResearchField observationFOS: Medical biotechnologyUniform resource locator link to referencePotentiometric titrationCalcite saturation stateLocationPotentiometricwaterNumber of spawning eventsAgeUniform resource locator/link to referenceOcean Acidification International Coordination Centre OA ICCMediterranean SeaAnimaliaEggs areaBehaviourTypeBicarbonate ionNektonEggs area standard errorTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)SpeciespH standard errorWet massDominant male paternity standard errorCalculated using CO2SYSEvent labelIndividualsCourtshipCarbonate system computation flagstandard lengthFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonTreatmentPartial pressure of carbon dioxide water at sea surface temperature wet airFishCarbon dioxideSingle speciesFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelf

description

Fish exhibit impaired sensory function and altered behaviour at levels of ocean acidification expected to occur owing to anthropogenic carbon dioxide emissions during this century. We provide the first evidence of the effects of ocean acidification on reproductive behaviour of fish in the wild. Satellite and sneaker male ocellated wrasse (Symphodus ocellatus) compete to fertilize eggs guarded by dominant nesting males. Key mating behaviours such as dominant male courtship and nest defence did not differ between sites with ambient versus elevated CO2 concentrations. Dominant males did, however, experience significantly lower rates of pair spawning at elevated CO2 levels. Despite the higher risk of sperm competition found at elevated CO2, we also found a trend of lower satellite and sneaker male paternity at elevated CO2. Given the importance of fish for food security and ecosystem stability, this study highlights the need for targeted research into the effects of rising CO2 levels on patterns of reproduction in wild fish.

https://dx.doi.org/10.1594/pangaea.867446