6533b881fe1ef96bd12d9125
RESEARCH PRODUCT
Data from: Disentangling structural genomic and behavioral barriers in a sea of connectivity
Julia M. I. BarthDavid Villegas-ríosCarla FreitasEven MolandBastiaan StarCarl AndréHalvor KnutsenIan BradburyJan DierkingChristoph PetereitDavid RightonJulian MetcalfeKjetill S. JakobsenEsben M. OlsenSissel JentoftJulia M.i. Barthsubject
medicine and health careHolocenesympatric ecotypesAtlantic codbehavioral traitsMedicineLife scienceschromosomal rearrangementsdescription
Genetic divergence among populations arises through natural selection or drift and is counteracted by connectivity and gene flow. In sympatric populations, isolating mechanisms are thus needed to limit the homogenizing effects of gene flow to allow for adaptation and speciation. Chromosomal inversions act as an important mechanism maintaining isolating barriers, yet their role in sympatric populations and divergence with gene flow is not entirely understood. Here, we revisit the question whether inversions play a role in the divergence of connected populations of the marine fish Atlantic cod, by exploring a unique dataset combining whole-genome sequencing data and behavioral data obtained with acoustic telemetry. Within a confined fjord environment, we find three genetically differentiated Atlantic cod types belonging to the oceanic North Sea population, the western Baltic population, and a local fjord-type cod. Continuous behavioral tracking over four years revealed temporally stable sympatry of these types within the fjord. Despite overall weak genetic differentiation consistent with high levels of gene flow, we detected significant frequency shifts of three previously identified inversions, indicative for an adaptive barrier to gene flow. In addition, behavioral data indicated that North Sea cod and individuals homozygous for the LG12 inversion had lower fitness in the fjord environment. However, North Sea and fjord-type cod also occupy different depths, possibly contributing to prezygotic reproductive isolation and representing a behavioral barrier to gene flow. Our results provide the first insights into a complex interplay of genomic and behavioral isolating barriers in Atlantic cod and establish a new model system towards an understanding of the role of genomic structural variants in adaptation and diversification.
year | journal | country | edition | language |
---|---|---|---|---|
2018-12-28 |