0000000001311525

AUTHOR

Ian Bradbury

Folate, related B vitamins, and homocysteine in childhood and adolescence: potential implications for disease risk in later life.

OBJECTIVES. Folate and the metabolically related B vitamins are an important priority throughout life, but few studies have examined their status through childhood and adolescence. The aims of the current study were to investigate age, gender, and lifestyle factors as determinants of folate, related B-vitamin status, and homocysteine concentrations among British children and adolescents and to propose age-specific reference ranges for these biomarkers, which, at present, are unavailable. PARTICIPANTS AND METHODS. Data from the National Dietary and Nutritional Survey of 2127 young people aged 4 to 18 years were accessed to provide a representative sample of British children. All of the subje…

research product

Disentangling structural genomic and behavioural barriers in a sea of connectivity

18 pages, 4 tables, 3 figures.-- This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

research product

Genomic stability through time despite decades of exploitation in cod on both sides of the Atlantic

Significance Both theory and experiments suggest that fishing can drive the evolution of an earlier maturation age. However, determining whether changes in the wild are the result of fisheries-induced evolution has been difficult. Temporal, genome-wide datasets can directly reveal responses to selection. Here, we investigate the genomes of two wild Atlantic cod populations from samples that pre- and postdate periods of intensive fishing. Although phenotypic changes suggest fisheries-induced evolution, we do not find evidence for any strong genomic change or loss of genetic diversity. While evolution could have occurred through undetectable frequency changes at many loci, the irreversible lo…

research product

Trans-oceanic genomic divergence of Atlantic cod ecotypes is associated with large inversions

Chromosomal rearrangements such as inversions can play a crucial role in maintaining polymorphism underlying complex traits and contribute to the process of speciation. In Atlantic cod (Gadus morhua), inversions of several megabases have been identified that dominate genomic differentiation between migratory and nonmigratory ecotypes in the Northeast Atlantic. Here, we show that the same genomic regions display elevated divergence and contribute to ecotype divergence in the Northwest Atlantic as well. The occurrence of these inversions on both sides of the Atlantic Ocean reveals a common evolutionary origin, predating the >100 000-year-old trans-Atlantic separation of Atlantic cod. The long…

research product

Data from: Disentangling structural genomic and behavioral barriers in a sea of connectivity

Genetic divergence among populations arises through natural selection or drift and is counteracted by connectivity and gene flow. In sympatric populations, isolating mechanisms are thus needed to limit the homogenizing effects of gene flow to allow for adaptation and speciation. Chromosomal inversions act as an important mechanism maintaining isolating barriers, yet their role in sympatric populations and divergence with gene flow is not entirely understood. Here, we revisit the question whether inversions play a role in the divergence of connected populations of the marine fish Atlantic cod, by exploring a unique dataset combining whole-genome sequencing data and behavioral data obtained w…

research product