6533b881fe1ef96bd12d9126

RESEARCH PRODUCT

Seawater carbonate chemistry and somatic and otolith growth relationship of Symphodus ocellatus

Antonio Di FrancoAntonio CaloKhalil SdiriCarlo CattanoMarco MilazzoPaolo Guidetti

subject

Ocean Acidification International Coordination Centre (OA-ICC)TemperateRegistration number of speciesIdentificationSalinityinorganicAlkalinityExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateChordataAlkalinity totaltotalCO2 ventTime in dayspHPelagosSymphodus ocellatusTemperaturedissolvedLength totalCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Temperature water standard deviationEarth System Researchstandard deviationField observationUniform resource locator link to referencePotentiometric titrationCalcite saturation stateLengthPotentiometricwaterPartial pressure of carbon dioxideSiteGrowth MorphologyAgeUniform resource locator/link to referenceSalinity standard deviationOcean Acidification International Coordination Centre OA ICCMediterranean SeaAnimaliaTypeSampling dateBicarbonate ionNektonCalculated using seacarb after Nisumaa et al. (2010)SpeciesCalculated using CO2SYSPartial pressure of carbon dioxide standard deviationCarbonate system computation flagpH standard deviationFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideGrowth/MorphologySingle speciesFugacity of carbon dioxide water at sea surface temperature wet airsense organs

description

Ocean acidification (OA) may have varied effects on fish eco-physiological responses. Most OA studies have been carried out in laboratory conditions without considering the in situ pCO2/pH variability documented for many marine coastal ecosystems. Using a standard otolith ageing technique, we assessed how in situ ocean acidification (ambient, versus end-of-century CO2 levels) can affect somatic and otolith growth, and their relationship in a coastal fish. Somatic and otolith growth rates of juveniles of the ocellated wrasse Symphodus ocellatus living off a Mediterranean CO2 seep increased at the high-pCO2 site. Also, we detected that slower-growing individuals living at ambient pCO2 levels tend to have larger otoliths at the same somatic length (i.e. higher relative size of otoliths to fish body length) than faster-growing conspecifics living under high pCO2 conditions, with this being attributable to the so-called 'growth effect'. Our findings suggest the possibility of contrasting OA effects on fish fitness, with higher somatic growth rate and possibly higher survival associated with smaller relative size of otoliths that could impair fish auditory and vestibular sensitivity.

https://dx.doi.org/10.1594/pangaea.919321