6533b882fe1ef96bd12d9e13

RESEARCH PRODUCT

Functional consequences of prey acclimation to ocean acidification for the prey and its predator

Sam DupontMatteo MercurioAntonio GiacolettiAlessandro RinaldiSimone MirtoLeonardo D'aquistoMaria Antonietta SabatinoGianluca Sarà

subject

Condition indexRegistration number of speciesSalinityTemperateBottles or small containers/Aquaria (<20 L)inorganicAlkalinityBrachidontes pharaonisIncubation durationExperimentTemperature waterCarbon inorganic dissolvedAssimilation efficiencyEriphia verrucosaBreaking loadCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateAlkalinity totalBottles or small containers Aquaria 20 LtotalpHTemperaturePartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedCarbonate ionLaboratory experimentPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)standard errorEarth System ResearchUniform resource locator link to referenceanimal structuresCalcite saturation stateArthropodaLengthwaterGrowth MorphologyFigureBenthosUniform resource locator/link to referenceMediterranean SeaAnimaliaBehaviourBicarbonate ionTime in secondsTypeTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)SpeciespH standard errorCalcite saturation state standard errorGrowth rateBottles or small containers/Aquaria (&lt;20 L)Calculated using CO2SYSfungiCarbonate system computation flagFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonTreatmentAragonite saturation state standard errorPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideMolluscaGrowth/MorphologyBenthic animalsFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelfSpecies interaction

description

Ocean acidification is the suite of chemical changes to the carbonate system of seawater as a consequence of anthropogenic carbon dioxide (CO2) emissions. Despite a growing body of evidences demonstrating the negative effects of ocean acidification on marine species, the consequences at the ecosystem level are still unclear. One factor limiting our ability to upscale from species to ecosystem is the poor mechanistic understanding of the functional consequences of the observed effects on organisms. This is particularly true in the context of species interactions. The aim of this work was to investigate the functional consequence of the exposure of a prey (the mussel Brachidontes pharaonis) to ocean acidification for both the prey and its predator (the crab Eriphia verrucosa). Mussels exposed to pH 7.5 for &gt;4 weeks showed significant decreases in condition index and in mechanical properties (65% decrease in maximum breaking load) as compared with mussels acclimated to pH 8.0. This translated into negative consequences for the mussel in presence of the predator crab. The crab feeding efficiency increased through a significant 27% decrease in prey handling time when offered mussels acclimated to the lowest pH. The predator was also negatively impacted by the acclimation of the prey, probably as a consequence of a decreased food quality. When fed with prey acclimated under decreased pH for 3 months, crab assimilation efficiency significantly decreased by 30% and its growth rate was 5 times slower as compared with crab fed with mussels acclimated under high pH. Our results highlight the important to consider physiological endpoints in the context of species interactions.

https://doi.org10.1594/pangaea.860509https://doi.org/https://doi.org/10.1594/PANGAEA.860509